Skip to main content

Toxicity of Tannic Compounds to Microorganisms

  • Chapter
Plant Polyphenols

Part of the book series: Basic Life Sciences ((BLSC,volume 59))

Abstract

The inhibition of microorganisms by tannic compounds is due to hydrogen bonding with vital proteins such as enzymes. An important factor governing the toxicity of tannic compounds to microorganisms is the tannin polymer size. The strongest inhibition occurs with oligomers, since these are large enough for effective crossbridged hydrogen bonds with proteins, yet small enough for penetration to the sensitive sites within microorganisms. Tannins are particularly vulnerable to polymerization reactions in air; therefore, in practice, the toxicity of tannins is quite dynamic. Polymerization can result in the toxification of tannin monomers and in the detoxification of tannin oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tagari, H.; Henis, Y.; Tamir, M.; Volcani, R. The effect of carob pod extract on cellulolysis, proteolyisis, deamination and protein biosynthesis in an artificial rumen. Appl. Microbiol. 13:437 (1965).

    PubMed  CAS  Google Scholar 

  2. Marquardt, R.R.; Ward, A.T.; Campbell, L.D.; Cansfield, P.E. Purification, identification and characterization of a growth inhibitor in faba beans (Vicia faba L. var.minor).J. Nutr. 107:1313 (1977).

    PubMed  CAS  Google Scholar 

  3. Lewis, J.A.; Starkey, R.L. Vegetable tannins, their decomposition and effects on decomposition of some organic compounds. Soil Sci. 106:241 (1968).

    Article  CAS  Google Scholar 

  4. Benoit, R.E.; Starkey, R.L.; Basaraba, J. Effect of purified plant tannin on decomposition of some organic compounds and plant materials. Soil Sci. 105:153 (1968).

    Article  CAS  Google Scholar 

  5. Daiber, K. Enzyme inhibition by polyphenols of sorghum grain and malt. J. Sci.Food Agrie. 26:1399 (1975).

    Article  CAS  Google Scholar 

  6. Verspuy, A.; Pilnik, W. Recovery of apple juice by pulp fermentation II: shortening the fermentation time. Flussiges Obst. 37:518 (1970).

    Google Scholar 

  7. Field, J.A.; Leyendeckers, M.J.H.; Sierra-Alvarez, R.; Lettinga, G.; Habets, L.H.A. The methanogenic toxicity of bark tannins and the anaerobic biodegradability of water soluble bark matter. Wat. Sci. Teeh. 20(1):219 (1988).

    CAS  Google Scholar 

  8. Field, J.A.; Lettinga, G. The methanogenic toxicity and anaerobic degradability of a hydrolyzable tannin. Wat. Res. 21:367 (1987).

    Article  CAS  Google Scholar 

  9. Lyr, H. On the toxicity of oxidized polyphenols. Phytopath. Z. 52:229 (1965).

    Article  CAS  Google Scholar 

  10. Benoit, R.E.; Starkey, R.L. Enzyme inactivation as a factor in the inhibition of decomposition of organic matter by tannins. Soil Sci. 105:203 (1968).

    Article  CAS  Google Scholar 

  11. Porter, W.L.; Schwartz, J.H. Isolation and description of the pectinase-inhibiting tannins of grape leaves. J. Food Sci. 27:416 (1962).

    Article  CAS  Google Scholar 

  12. Lyr, H. Hemmungsanalytische Untersuchungen an einigen ektoenzymen holzzerstorender Pilze. Enzymologia 23:231 (1961).

    PubMed  CAS  Google Scholar 

  13. Williams, A.H. Enzyme inhibition by phenolic compounds. In: Enzyme chemistry of phenolic compounds. Pridham, J.B. (ed.) Pergamon Press, New York, pp. 87–95 (1963).

    Google Scholar 

  14. Hulmes, A.C.; Jones, J.D. Tannin inhibition of plant mitochondria. In: Enzyme chemistry of phenolic compounds. Pridham J.B. (ed.) Pergamon Press, New York, pp. 97–120 (1963).

    Google Scholar 

  15. Goldstein, J.L.; Swain, T. The inhibition of enzymes by tannins. Phytochemistry 4:185 (1965).

    Article  CAS  Google Scholar 

  16. Tamir, M.; Alumot, E. Inhibition of digestive enzymes by condensed tannins from green and ripe tannins. J. Sci. Food Agric. 20:199 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. Firenzuoli, A.M.; Vanni, P.; Mastronuzzi, E. The effect of some aromatic compounds on pure enzymes and their subsequent reactivation by PVP and Tween 80. Phytochemistry 8:61 (1969).

    Article  CAS  Google Scholar 

  18. Boser, H. Modellversuche zur Beeinflussing des Zellstoffweschsel durch Pflanzeninhalt-stootoffe, insbesondere Flavonoide. Planta Med. 9:456 (1961).

    Article  CAS  Google Scholar 

  19. Strumeyer, D.H.; Malin, M.J. Identification of the amylase inhibitor from seeds of Leoti sorghum. Biochim. Biophys. Acta. 184:643 (1969).

    Article  PubMed  CAS  Google Scholar 

  20. Hart, J.H.; Hillis, W.E. Inhibition of wood-rotting fungi by ellagitannins in the heartwood of Quercus alba. Phytopathology 62:620 (1972).

    Article  CAS  Google Scholar 

  21. Nienstaedt, H. Tannin as a factor in the resistance of chestnut, Castanea spp., to the chestnut blight fungus, Endothia parasitica. Phytopathology 43:32 (1953).

    CAS  Google Scholar 

  22. Lewis, J.A.; Papavizas, G.C. Effects of tannins on spore germination and growth of Fusarium solani, F. phaseoli, and Vertidllium albo-atrum. Can. J. Microbiol. 13:1655 (1967).

    Article  PubMed  CAS  Google Scholar 

  23. Kekos, D.; Macris, B.J. Effect of tannins on growth and amylase production by Calvatia gigantea. Enzyme Microb. Ttchnol. 9(2):54 (1987).

    Google Scholar 

  24. Yu, M.; Chang, S.T. Tolerance of tannin by shiitake mushroom, Lentinus edodes. MIRCEN J. 5:375 (1989).

    Article  CAS  Google Scholar 

  25. Cowley, G.T.; Whittingham, W.F. The effect of tannin on the growth of selected soil microfungi in culture. Mycologia 53:539 (1961).

    Article  Google Scholar 

  26. Basaraba, J. Effect of vegetable tannins on glucose oxidation by various microorganisms. Can. J. Microbiol. 12:787 (1966).

    Article  PubMed  CAS  Google Scholar 

  27. Basaraba, J. Influence of vegetable tannins on nitrification in soil. Plant and Soil 21:8 (1964).

    Article  Google Scholar 

  28. Henis, Y.; Tagari, H.; Volcani, R. Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of microorganisms. Appl. Microbiol. 12:204 (1964).

    PubMed  CAS  Google Scholar 

  29. Booth, G.H. A study of the effect of tannins on the growth of sulphate-reducing bacteria. J. Appl. Bact. 23:125 (1960).

    Article  CAS  Google Scholar 

  30. Haslam, E. Polyphenol-protein interactions. Biochem J. 139:285 (1974).

    PubMed  CAS  Google Scholar 

  31. Bate-Smith, E.C. Haemanalysis of tannins:the concept of relative astringency. Phytochemistry 12:907 (1973).

    Article  CAS  Google Scholar 

  32. Allaux, M.M. Effets et biodégradation des composés phénoliques chez les microorganismes anaérobies. Thesis, Laboratoire de Biotechnologie de L’Environment des I.I.A., Institut National de la Recherche Agronomique, Narbonne, Cedex, France, (1989).

    Google Scholar 

  33. White, T. Tannins-their occurence and significance. J. Sci. Food Agric. 8:377 (1957).

    Article  CAS  Google Scholar 

  34. Singleton, V.L. Common plant phenols other than anthocyanins contribution to coloration and discoloration. In: Chichester, C.O. (ed.) Advances in food research. Supplement 3. The chemistry of plant pigments. Academic Press, New York, pp. 143–191 (1972).

    Google Scholar 

  35. Martin, J.P.; Haider, K.; Bondeietti, E. Properties of model humic acids synthesized by phenoloxidase and autoxidation of phenols and other compounds formed by soil fungi. In: Povoledo, D; Golterman, H.L. (eds.) Humic substances: their structure and function in the biosphere. Proceedings of an International Meeting Held at Nieuwersluis, The Netherlands, May 29-31, 1972. PUDOC-Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp. 171–186 (1975).

    Google Scholar 

  36. Haider, K.; Martin, J.P.; Filip, Z.; Fustec-Mathon, E. Contribution of soil microbes to the formation of humic compounds. In:Povoledo, D; Golterman, H.L. (eds.) Humic substances: their structure and function in the biosphere. Proceedings of an International Meeting Held at Nieuwersluis, The Netherlands, May 29–31, 1972. PUDOC Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp.71–85 (1975).

    Google Scholar 

  37. Sjoblad, R.D.; Bollag, J.M. Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul, E.A.; Ladd, J.N. (eds.) Soil biochemistry. Vol. 5. Marcel Dekker, Inc., New York, pp. 113–152 (1981).

    Google Scholar 

  38. Mathew, A.G.; Parpia, H.A.B. Food browning as a polyphenol reaction. In: Chichester, CO.; Mrak, E.M.; Stewart, G.F. (eds.) Advances in food research.Vol 19, Academic Press, New York, pp. 75–145 (1971).

    Google Scholar 

  39. Haider, K.; Martin, J.P.; Filip, Z. Humus biochemistry. In: Paul, E.A.; McLaren, A.D. (eds.) Soil biochemistry. Vol. 4. Marcel Dekker, Inc., New York, pp. 196–244 (1975).

    Google Scholar 

  40. E. H. 1958. The polyphenolase of tobacco and its participation in amino acid metabolism. 1. Manometric studies. Arch. Bioehem. Biophys. 74:198 (1975).

    Google Scholar 

  41. Jackson, H.; Kendal, L.P. The oxidation of catechol and homocatechol by tyrosinase in the presence of amino acids. Biochem. J. 44:477 (1949).

    PubMed  CAS  Google Scholar 

  42. Loomis, W.D.; Battaile, J. Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry, 5:423 (1966).

    Article  CAS  Google Scholar 

  43. Mason, H.S.; Peterson, E.W. Melanoproteins:1.Reactions between enzyme generated quinones and amino acids. Biochem. Biophys. Acta 111:134 (1965).

    Article  PubMed  CAS  Google Scholar 

  44. Stevenson, F.J. Biochemistry of the formation of humic substances. Chapter 8 In: Humus chemistry: genesis, composition, reactions. John Wiley and Sons, New York, pp. 195–220 (1982).

    Google Scholar 

  45. Bollag, J-M.; Minard, R.D.; Liu, S-Y. Cross-linkage between anilines and phenolic humus constituents. Environ. Sci. Technol. 17:72 (1983).

    Article  CAS  Google Scholar 

  46. Bollag, J-M.; Liu, S-Y. Copolymerization of halogenated phenols and syringic acid. Pesticide Biochem. Physiol. 23:261 (1985).

    CAS  Google Scholar 

  47. Hathway, D.E.; Seakins, J.W.T. Autoxidation of catechin. Nature 176:218 (1955).

    Article  Google Scholar 

  48. Hathway, D.E.; Seakins, J.W.T. Enzymatic oxidation of catechin to a polymer structurally related to some phlobatannins. Biochem. J. 67:239 (1957).

    PubMed  CAS  Google Scholar 

  49. Field, J.A.; Kortekaas, S.; Lettinga, G. The tannin theory of methanogenic toxicity. Biological Wastes 29:241 (1989).

    Article  CAS  Google Scholar 

  50. Weinges, K.; Ebert, W.; Huthwelker, D.; Mattauch, H.; Perner, J. Oxydative kupplung von phenolen, 2.Konstitution und bildungsmechanismus des dehydro-dicatechins A. Liebigs Ann. Chem. 726:114 (1969).

    Article  CAS  Google Scholar 

  51. Baruah, P.; Swain, T. The action of potato phenolase on flavanoid compounds. J. Sci. Food Agric. 10:125 (1959).

    Article  CAS  Google Scholar 

  52. Updegraff, D.M.; Grant, W.D. Microbial utilization of Pinus radiata bark. Appl. Microbiol. 30:722 (1975).

    PubMed  CAS  Google Scholar 

  53. Field, J. A.; Lettinga, G.; Habets, L.H.A. Oxidative detoxification of aqueous bark extracts. Part I: autoxidation. J. Chem. Technol. Biotechnol. 49:15 (1990).

    CAS  Google Scholar 

  54. Field, J.A.; Lettinga, G. Treatment and detoxification of aqueous spruce bark extracts by Aspergillus niger. Wat. Sci. Tech. 24(3/4):127 (1991).

    CAS  Google Scholar 

  55. Forss, K.; Jokinen, K.; Savolainen, M.; Williamson, H. Utilization of enzymes for effluent treatment in the pulp and paper industry. Paper ja Pun — Paper and Timber 10:1108 (1989).

    Google Scholar 

  56. Lea, G.H.A. Reversed-phase high performance liquid chromatography of procyanidins and other phenolics in fresh and oxidising apple juices using a pH shift technique. J. Chromatogr. 238:253 (1982).

    Article  CAS  Google Scholar 

  57. Stahmann, M.A. The biochemistry of proteins of the host and parasite in some plant diseases. Tagungs Berichte: Deutsche Demokratische Republik Deutsche Akademie Der Landwirtschaftswissenschaften Zu Berlin, 74:9 (1965).

    Google Scholar 

  58. Oku, H. Biochemical studies on Cochliobolus miyabeanus: 4. Fungicidal action of polyphenols and the role of polyphenoloxidase of the fungus. Phytopath. 2. 38:343 (1960).

    Google Scholar 

  59. Harrison, B.D.; Pierpoint, W.S. The relation of polyphenoloxidase in leaf extracts to the instability of cucumber mosaic and other plant viruses. J. Gen. Microbiol. 32:417 (1963).

    PubMed  CAS  Google Scholar 

  60. Field, J.A.; Lettinga, G. The effect of oxidative coloration on the methanogenic toxicity and anaerobic biodegradability of phenols. Biological Wastes 29:161 (1989).

    Article  CAS  Google Scholar 

  61. Field, J. A.; Kortekaas, S.; Lettinga, G. The effect of autoxidation on the methanogenic toxicity and anaerobic biodegradability of pyrogallol. Biological Wastes 30:111 (1989).

    Article  CAS  Google Scholar 

  62. Rudman, P. The causes of natural durability in timber: 8. The causes of decay resistance in tallowwood (Eucalyptus microccryt F. Meull.), white mahogany (Eucalyptus triantha Link.) and mountain ash (Eucalyptus regnans F. Muell.). Holzforschung 16(2):56 (1962).

    Article  CAS  Google Scholar 

  63. Temmink, J. H. M.; Field, J.A.; van Haastrecht, J.C.; Merckelbach, R.C.M. Acute and sub-acute toxicity of bark tannins to carp (Cyprinus carpio L). Wat. Res. 23:341 (1989).

    Article  CAS  Google Scholar 

  64. Field, J. A.; Lettinga, G.; Habets, L.H.A. Measurement of low molecular weight tannins: Indicators of methanogenic toxic tannins. J. Fermentation Bioengineer. 69:148 (1990).

    Article  CAS  Google Scholar 

  65. Field, J.A.; Leyendeckers, M.J.H.; Sierra-Alvarez, R.; Lettinga, G.; Habets, L.H.A. Continuous anaerobic treatment of autoxidized bark extracts in laboratory-scale columns. Biotechnol. Bioengineer. 37:247 (1991).

    Article  CAS  Google Scholar 

  66. Vachon, V.; Darwin, D.J.; Coulton, J.W. Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b. J. Bacteriol. 162:918 (1985).

    PubMed  CAS  Google Scholar 

  67. Hancock, R.E.; Nikaido, H. Outer membranes of gram-negative bacteria: 19. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of permeability barrier. J. Bacteriol. 136:381 (1978).

    PubMed  CAS  Google Scholar 

  68. Vachon, V.; Kristjanson, D.N.; Coulton, J.W. Outer membrane porin protein of Haemophilus influenzae type b: Pore size and subunit structure. Can. J. Microbiol. 34:134 (1988).

    Article  PubMed  CAS  Google Scholar 

  69. Jones, W.T.; Broadhurst, R.B.; Lyttleton, J.W. The condensed tannins of pasture legume species. Phytochemistry 15:1407 (1976).

    Article  CAS  Google Scholar 

  70. Rudman, P. The causes of natural durability in timber: 12. The deterioration in antifungal activity of heartwood extractives during the life of trees of Eucalyptus marginata Sm. Holzforschung 17(3):86 (1963).

    Article  CAS  Google Scholar 

  71. Lewis, J.A.; Starkey, R.L. Decomposition of plant tannins by some soil microorganisms. Soil Sci. 107:235 (1969).

    Article  CAS  Google Scholar 

  72. Yamada, H.; Adachi, O.; Watanabe, M.; Sato, N. Studies on fungal tannase:Part 1. Formation, purification and catalytic properties of tannase of Aspergillus flavus. Agr. Biol. Chem. 32:1070 (1968).

    Article  CAS  Google Scholar 

  73. Jacob, F.H.; Pignal, M.C. Interactions levures-tannins.II. Etude en milieu tannant de quelques levures hydrolysant l’acide tannique. Mycopathol. Mycol. Appl. 48:121 (1972).

    Article  CAS  Google Scholar 

  74. Deschamps, A.M.; Otuk, G.; Lebeault, J-M. Production of tannase and degradation of chestnut tannin by bacteria. J. Ferment. Technol. 61:55 (1983).

    CAS  Google Scholar 

  75. Field, J.A.; Lettinga, G. Biodegradation of tannins. In: Sigel. H. (ed.) Metal Ions in biological systems. Volume 28: Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, Inc., New York, (in press).

    Google Scholar 

  76. Broderick, A.J.; Sinclair, E.S. Microbial biomass production by continuous fermentation of bark hydrolysate. Appl. Microbiol. Biotechnol. 20:384 (1984).

    CAS  Google Scholar 

  77. Deschamps, A.M.; Leulliette, L. Tannin degradation by yeasts from decaying bark. International Biodeterioration 20:237 (1984).

    CAS  Google Scholar 

  78. Hamdi, M.; Khadir, A.; Garcia, J-L. The use of Aspergillus niger for the bioconversion of olive mill waste-water. Appl. Microbiol. Biotechnol. 34:828 (1991).

    CAS  Google Scholar 

  79. Bollen, W.B.; Lu, K.C. Douglas-fir bark tannin decomposition in two forest soils. USDA Forest Service, Pacific Northwest Forest Range Experiment Station, Research Paper PNW 85, Portland, OR, pp. 1-12 (1969).

    Google Scholar 

  80. Grant, W.D. Microbial degradation of condensed tannins. Science 17:1137 (1976).

    Article  Google Scholar 

  81. Chandra, T.; Krishnamurty, V.; Madhavakrishna, W.; Nayudamma, Y. Astringency in fruits—5: Microbial degradation of wood apple (Feronia elephanturn) tannin. Leather Sci. 20:269 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Field, J.A., Lettinga, G. (1992). Toxicity of Tannic Compounds to Microorganisms. In: Hemingway, R.W., Laks, P.E. (eds) Plant Polyphenols. Basic Life Sciences, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3476-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3476-1_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6540-2

  • Online ISBN: 978-1-4615-3476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics