Skip to main content

The Application of Planar Lipid Bilayers to the Study of Plant Ion Channels

  • Chapter
Transport and Receptor Proteins of Plant Membranes
  • 109 Accesses

Abstract

In this article we describe the basic equipment and techniques required to study plant ion channels in planar lipid bilayers (PLB). We discuss the advantages and drawbacks of this technique compared to other electrophysiological techniques. We review previous PLB studies of plant ion channels and discuss our recent investigation of K+ channels at the plasma membrane of rye (Secale cereale) roots. We conclude with an overview of the possible future applications of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov, A.A., Berestovsky, G.N., Volkova, S.P., Vostrikov, I.Y., Zherelova, O.M., Kravchik, S, and Lunevsky, V.Z., 1976. Reconstruction of a single calcium-sodium channel of a cell in a lipid bilayer. Doklady Akademy Nauk SSSR, 227, 37–40.

    Google Scholar 

  • Alexandre, J., Lassalles, J.P., and Kado, R.T., 1990. Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature, 343, 567–70.

    Article  CAS  Google Scholar 

  • Alvarez, O., 1986. How to set up a bilayer system. In Ion channel reconstitution Ed C. Miller. Plenum Press, New York. pp 115–130.

    Google Scholar 

  • Berestovsky, G.N., Zherelova, O.M., and Kataev, A.A., 1987. Ionic channels in characean algal cells. Biophysics, 32, 1101–1120.

    Google Scholar 

  • Bezprozvanny, I., Watras, J., and Ehrlich, B.E., 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 351, 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Brodey, C.L., Rainey, P.B., Tester, M., and Johnstone, K., 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Molecular Plant-Microbe Interactions, 4, 407–411.

    Article  CAS  Google Scholar 

  • Carafoli, E., 1987. Intracellular calcium homeostasis. Annual Review of Biochemistry, 56, 395–433.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W.A., 1988. Structure and function of voltage-sensitive ion channels. Science, 242, 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F.S., 1986. Fusion of liposomes to planar bilayers. In Ion channel reconstitution, Ed C. Miller. Plenum Press, New York. pp 131–139.

    Google Scholar 

  • Cohen, F.S., Zimmerberg, J., and Finkelstein, A., 1980. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. Journal of General Physiology, 75, 251–270.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F.S., Niles, W.D., and Akabas, M.H., 1989. Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure. Ibid, 93, 201–210.

    CAS  Google Scholar 

  • Colombini, M., 1987. Characterization of channels isolated from plant mitochondria. Methods in Enzymology, 148, 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., 1986. Recent advances in planar phospholipid bilayer techniques for monitoring ion channels. Annual Review of Biophysics and Biophysical Chemistry, 15, 259–277.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, B.E., and Watras, J., 1988. Inosito11,4,5-trisphosphateactivates a channel from smooth muscle sarcoplasmic reticulum. Nature, 336, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Felle, H., 1991. Aspects of Ca2+ homeostasis in Riccia fluitans: reactions to perturbations in cytosolic-free Ca2+. Plant Science, 74, 27–33.

    Article  CAS  Google Scholar 

  • Flugge, U.I., and Benz, R., 1984. Pore-forming activity in the outer membrane of the chloroplast envelope. FEBS Letters, 169, 85–89.

    Article  Google Scholar 

  • Grabov, A.M., 1990. Voltage-dependent potassium channels in the root hair plasmalemma. Soviet Plant Physiology, 37, 242–247.

    Google Scholar 

  • Grishchenko, V.M., Aleksandrov, A.A., and Berestovsky, G.N., 1984. Isolation of a fraction of cytoplasmic proteins possessing channel-forming activity from characeous algae. Ibid, 31, 787–793.

    Google Scholar 

  • Hanke, W., 1986. Incorporation of ion channels by fusion. In Ion channel reconstitution Ed C. Miller. Plenum Press, New York. pp 141–153.

    Google Scholar 

  • Hedrich, R., Barbier-Brygoo, H., Felle, H., Flugge, U.I., Lüttge, U., Maathuis, F.J.M., Marx, S., Prins, H.B.A., Raschke, K., Schnabl, H., Schroeder, J.I., Struve, I., Taiz, L., and Ziegler, P., 1988. General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps. Botanica Acta, 101, 713.

    Google Scholar 

  • Hedrich, R., and Neher, E., 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature, 329, 833–836.

    Article  Google Scholar 

  • Hedrich, R., and Schroeder, J.I., 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 539–569.

    Article  Google Scholar 

  • Hedrich, R., Stoeckel, H., and Takeda, K., 1990. Electrophysiology of the plasma membrane of higher plant cells: New insights from patch-clamp studies. In The plant plasma membrane. Structure, function and molecular biology Eds C. Larsson and I.M. Meller. Springer-Verlag, Berlin. pp 182–202.

    Google Scholar 

  • Hille, B., 1984. Ionic channels of excitable membranes. Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Hymel, L., Inui, M., Fleischer, S., Schindler, H., 1988. Purified ryanodyne receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proceedings of the National Academy of Sciences, USA 85, 441–445.

    Article  CAS  Google Scholar 

  • Kreuger, B.K., 1989. Toward an understanding of structure and function of ion channels. FASEB Journal, 3, 1906–1914.

    Google Scholar 

  • Lewis, C.A., 1979. Ion concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. Journal of Physiology, 286, 417–445.

    PubMed  CAS  Google Scholar 

  • Lord, J.M., 1983. Endoplasmic reticulum and ribosomes. In Isolation of membranes and organelles from plant cells Eds J.L. Hall and A.L. Moore. Academic Press, London. pp 119–134.

    Google Scholar 

  • Lunevsky, V., Aleksandrov, A., Berestovsky, G., Volkova, S., Vostrikov, I., Zherelova, O., 1977. Ionic mechanism of excitation of plasmalemma and tonoplast of characean algal cells. In Transmembrane ionic exchanges in plants. Colloque du CNRS, 258. Eds M. Thellier, A. Monnier, M. Demarty, and J. Dainty. pp 167–72.

    Google Scholar 

  • Lunevsky, V., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N., 1983. Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. Journal of Membrane Biology, 72, 43–58.

    Article  Google Scholar 

  • Marshall, J., 1991. Calcium fluxes at the plasma membrane of Zea mays roots. D.Phil. Thesis, University of York.

    Google Scholar 

  • Miller, C., 1986. Ed Ion channel reconstitution Plenum Press, New York.

    Google Scholar 

  • Miller, C., Aryan, P., Telford, J.N., and Racker, E., 1976. Ca++-induced fusion of proteoliposomes: dependence on transmembrane osmotic gradient. Journal of Membrane Biology, 30, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Montal, M., and Mueller, P., 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proceedings of the National Academy of Sciences, USA 69, 3561–3566.

    Article  CAS  Google Scholar 

  • Niles, W.D., and Cohen, F.S., 1987. Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Journal of General Physiology, 90, 703–735.

    Article  PubMed  CAS  Google Scholar 

  • Niles, W.D., Cohen, F.S., and Finkelstein, A., 1989. Hydrostatic pressures developed by osmotically swelling vesicles bound to planar membranes. Ibid, 93, 211–244.

    CAS  Google Scholar 

  • Robinson, R.A., and Stokes, R.H., 1959. Electrolyte solutions Butterworths Scientific Publications, London.

    Google Scholar 

  • Rousseau, E., and Briskin, D.P., 1989. Monovalent ion selective channels derived from red beet endoplasmic reticulum. Biophysics Journal, 55, 155a.

    Google Scholar 

  • Sakmann, B., and Neher, E., 1983. Eds Single channel recording Plenum Press, New York.

    Google Scholar 

  • Schindler, H., and Rosenbusch, J.P., 1978. Matrix protein from Escherichia coli outer membrane forms voltage-controlled channels in lipid bilayers. Proceedings of the National Academy of Sciences, USA 75, 3751–3755.

    Article  CAS  Google Scholar 

  • Schonknecht, G., Hedrich, R., Junge, W., and Raschke, K., 1988. A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature, 336, 589–592.

    Article  Google Scholar 

  • Smack, D.P., and Colombini, M., 1985. Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiology, 79, 1094–1097.

    Article  PubMed  CAS  Google Scholar 

  • Tanifuji, M., Sato, M., Wada, Y., Anraku, Y., and Kasai, M., 1988. Gating behaviours of a voltage-dependent and Ca2+-activated cation channel of yeast vacuolar membrane incorporated into planar lipid bilayer. Journal of Membrane Biology, 106, 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Tester, M.A., 1988. Studies of ion channels in Chara corallina Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  • Tester, M.A., 1990. Plant ion channels: whole-cell and single-channel studies. New Phytologist, 114, 305–340.

    Article  Google Scholar 

  • Tester, M.A., and Blatt, M.R., 1989. Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiology, 91, 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Tester, M.A., and Harvey, H.J., 1989. Verapamil-binding fraction forms Ca2+ channels in planar lipid bilayers. In Plant membrane transport: The current position. Eds J. Dainty, M.I. De Michelis, E. Marra and F. Rasi-Caldogno. Elsevier, Amsterdam. pp 277–278.

    Google Scholar 

  • Tsien, R.W., and Tsien, R.Y., 1990. Calcium channels, stores and oscillations. Annual Review of Cell Biology, 6, 715–760.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev, P.M., Kanazirska, M.P., and Tien, H.T., 1987. Ca2+ channels from brain microsomal membranes reconstituted in patch-clamped bilayers. Biochimica et Biophysica Acta, 897, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Wada, Y., Ohsumi, Y., Tanifuji, M., Kasai, M., and Anraku, Y., 1987. Vacuolar ion channel of the yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 262, 17260–17263.

    CAS  Google Scholar 

  • White, P.J., 1992a. A super-maxi cation channel from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. I. Selectivity. Planta, submitted.

    Google Scholar 

  • White, P.J., 1992b. A super-maxi cation channel from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. II. Voltage-dependent kinetics. Planta, submitted.

    Google Scholar 

  • White, P.J., and Tester, M.A., 1991. Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. Planta, in press.

    Google Scholar 

  • Woodbury, D.J., and Hall, J.E., 1988a. Vesicle-membrane fusion: observation of simultaneous content release and membrane incorporation. Biophysics Journal, 54, 345–349.

    Article  CAS  Google Scholar 

  • Woodbury, D.J., and Hall, J.E., 1988b. Role of channels in the fusion of vesicles with a planar bilayer. Ibid, 54, 1053–1063.

    CAS  Google Scholar 

  • Woodbury, D.J., and Miller, C., 1990. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstruction into planar lipid bilayers. Ibid, 58, 833–839.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, P.J., Tester, M. (1992). The Application of Planar Lipid Bilayers to the Study of Plant Ion Channels. In: Cooke, D.T., Clarkson, D.T. (eds) Transport and Receptor Proteins of Plant Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3442-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3442-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6523-5

  • Online ISBN: 978-1-4615-3442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics