Skip to main content

Phenylpropanoid Metabolism: Biosynthesis of Monolignols, Lignans and Neolignans, Lignins and Suberins

  • Chapter
Book cover Phenolic Metabolism in Plants

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 26))

Abstract

During the growth and development of vascular plants, specific phenylpropanoid metabolites differentially accumulate in particular tissues and/or cells of specialized function(s). Examples include the deposition of lignins in xylem tissue and vascular bundles and suberins in suberized cells, the accumulation of flavonoids in vacuolar and sometimes in wall compartments, and the ester attachment of hydroxycinnamic acids to arabinoxylans in the cell wall. Many of these metabolites confer unique properties to particular tissues or cells without which the competitive survival of vascular plants would be severely, if not fatally, compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, N.G., Yamamoto, E. 1990. Lignins: Occurrence, biosynthesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:455–496.

    PubMed  CAS  Google Scholar 

  2. Koukol, J., Conn, E.E. 1961. The metabolism of aromatic compounds in higher plants: IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236:2692–2698.

    PubMed  CAS  Google Scholar 

  3. Hanson, K.R., Havir, E.A. 1979. An introduction to the enzymology of phenylpropanoid biosynthesis. Rec. Adv. Phytochem. 12:91–137, New York, Plenum Press.

    Google Scholar 

  4. Hanson, K.R., Havir, E.A. 1981. Phenylalanine ammonia-lyase. In: The Biochemistry of Plants. Vol. 7, Secondary Plants Products (E.E. Conn, ed.) Academic Press, New York:, pp. 577–625.

    Google Scholar 

  5. Jones, D.H. 1984. Phenylalanine ammonia-lyase: Regulation of its induction, and its role in plant development. Phytochemistry 23:1349–1359.

    CAS  Google Scholar 

  6. Hahlbrock, K., Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369.

    CAS  Google Scholar 

  7. Tanaka, Y., Uritani, I. 1977. Purification and properties of phenylalanine ammonia-lyase in cut-injured sweet potato. J. Biochem. 81:963–970.

    PubMed  CAS  Google Scholar 

  8. Tanaka, Y., Matsuoka, M., Yamamoto, N., Ohashi, Y., Kano-Murakami, Y., Ozeki, Y. 1989. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiol. 90:1403–1407.

    PubMed  CAS  Google Scholar 

  9. Havir, E.A., Hanson, K.R. 1968. L-Phenylalanine ammonia-lyase. I. Purification and molecular size of the enzyme from potato tubers. Biochemistry 7:1896–1903.

    PubMed  CAS  Google Scholar 

  10. Havir, E.A. 1981. Phenylalanine ammonia-lyase: Purification and characterization from soybean cell suspension cultures. Arch. Biochem. Biophys. 211:556–563.

    PubMed  CAS  Google Scholar 

  11. Gupta, S., Acton, G.J. 1979. Purification to homogeneity and some properties of L-phenylalanine ammonia-lyase of irradiated mustard (Sinapis alba L.) cotyledons. Biochim. Biophys. Acta 570:187–197.

    PubMed  CAS  Google Scholar 

  12. Havir, E.A., Reid, P.D., Marsh, H.V., JR. 1971. L-Phenylalanine ammonia-lyase (Maize). Evidence for a common catalytic site for Lphenylalanine and L-tyrosine. Plant Physiol. 48:130–136.

    PubMed  CAS  Google Scholar 

  13. Camm, E.L., Towers, G.H.N. 1973. Phenylalanine ammonia-lyase. Phytochemistry 12:961–973.

    CAS  Google Scholar 

  14. Chen, R.-Y., Chang, T.-C., Liu, M.-S. 1988. Phenylalanine ammonia-lyase of bamboo shoots. Agric. Biol. Chem. 52:2137–2142.

    CAS  Google Scholar 

  15. Jorrin, J., Lopez-Valbuena, R., Tena, M. 1988. Purification and properties of phenylalanine ammonia-lyase from sunflower (Helianthus annuus. L.) hypocotyls. Biochim. Biophys. Acta 964:73–82.

    CAS  Google Scholar 

  16. Given, N.K., Venis, M.A., Grierson, D. 1988. Purification and properties of phenylalanine ammonia-lyase from strawberry fruit and its synthesis during ripening. J. Plant Physiol. 133:31–37.

    CAS  Google Scholar 

  17. Whetten, R.W., Sederoff, R.R. 1992. Phenylalanine ammonialyase from loblolly pine. Plant Physiol. 98:380–386.

    PubMed  CAS  Google Scholar 

  18. Jorrin, J., Dixon, R.A. 1990. Stress responses in alfalfa (Medicago sativa L.). II. Purification, characterization, and induction of phenylalanine ammonia-lyase isoforms from elicitor-treated cell suspension cultures. Plant Physiol. 92:447–455.

    PubMed  CAS  Google Scholar 

  19. Lopez-Valbuena, R., Obrero, R., Jorrin, J., Tena, M. 1991. Isozyme multiplicity in phenylalanine ammonia-lyase from Vicia faba leaves. Plant Physiol. Biochem. 29:159–164.

    CAS  Google Scholar 

  20. Bolwell, G.P., Bell, J.N., Cramer, C.L., Schuch, W., Lamb, C.J., Dixon, R.A. 1985. Phenylalanine ammonia-lyase from Phaseolus vulgaris: Characterization and differential induction of multiple forms from elicitor-treated cell suspension cultures. Eur. J. Biochem. 149:411–419.

    PubMed  CAS  Google Scholar 

  21. Cramer, C.L., Edwards, K., Dron, M., Liang, X., Dildine, S.L., Bolwell, G.P., Dixon, R.A., Lamb, C.J., Schuch, W. 1989. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol. Biol. 12:367–383.

    CAS  Google Scholar 

  22. Schulz, W., Eiben, H.-G., Hahlbrock, K. 1989. Expression in Escherichia coli of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett. 258:335–338.

    PubMed  CAS  Google Scholar 

  23. Lois, R., Dietrich, A., Hahlbrock, K., Schulz, W. 1989. Phenylalanine ammonia-lyase gene from parsley: Structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J. 8:1641–1648.

    PubMed  CAS  Google Scholar 

  24. Minami, E., Ozeki, Y., Matsuoka, M., Koizuka, N., Tanaka, Y. 1989. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur. J. Biochem. 185:19–25.

    PubMed  CAS  Google Scholar 

  25. Ohl, S., Hedrick, S.A., Chory, J., Lamb, C.J. 1990. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837–848.

    PubMed  CAS  Google Scholar 

  26. Liang, X., Dron, M., Cramer, C.L., Dixon, R.A., Lamb, C.J. 1989. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J. Biol. Chem. 264:14486–14492.

    PubMed  CAS  Google Scholar 

  27. Liang, X., Dron, M., Schmid, J., Dixon, R.A., Lamb, C.J. 1989. Developmental and environmental regulation of a phenylalanine ammonia-lyase-β-glucuronidase gene fusion in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86:9284–9288.

    PubMed  CAS  Google Scholar 

  28. Kuhn, D.N., Chappell, J., Hahlbrock, K. 1983. Identification and use of cDNAs of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in studies of the induction of phytoalexin biosynthetic enzymes in cultured parsley cells. In: Structure and Function of Plant Genes. (O. Ciferri, L. Dure, eds.) NATO ASI Series, Chapman and Hall, London, pp. 329–336.

    Google Scholar 

  29. Kuhn, D.N., Chappell, J., Boudet, A., Hahlbrock, K. 1984. Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc. Natl. Acad. Sci. USA 81:1102–1106.

    PubMed  CAS  Google Scholar 

  30. Shaw, N.M., Bolwell, G.P., Smith, C. 1990. Wound-induced phenylalanine ammonia-lyase in potato (Solanum tuberosum) tuber discs. Significance of glycosylation and immunolocalization of enzyme subunits. Biochem. J. 267:163–170.

    CAS  Google Scholar 

  31. Grand, C. 1984. Ferulic acid 5-hydroxylase: A new cytochrome P-450-dependent enzyme from higher plant microsomes involved in lignin synthesis. FEBS Lett. 169:7–11.

    CAS  Google Scholar 

  32. Saimmaime, I., Coulomb, C., Coulomb, P.-J., Roggero, J.-P. 1990. Mise en évidence d’une activité cinnamate 4-hydroxylase dans des feuilles de Capsicum annuum. Plant Physiol. Biochem. 28:323–331.

    CAS  Google Scholar 

  33. Kojima, M., Takeuchi, W. 1989. Detection and characterization of p-coumaric acid hydroxylase in mung bean (Vigna mungo) seedlings. J. Biochem. 105:265–270.

    PubMed  CAS  Google Scholar 

  34. Gross, G.G. 1985. Biosynthesis and metabolism of phenolic acids and monolignols. In: Biosynthesis and Biodegradation of Wood Components. (T. Higuchi, ed.) Academic Press, Orlando, pp. 229–271.

    Google Scholar 

  35. Kamsteeg, J., Van Brederode, J., Verschuren, P.M., Van Nigtevecht, G. 1981. Identification, properties and genetic control of p-coumaroyl coenzyme A, 3-hydroxylase isolated from petals of Silene dioica. Z. Pflanzenphysiol. 102:435–442.

    CAS  Google Scholar 

  36. Boniwell, J.M., Butt, V.S. 1986. Flavin nucleotide-dependent 3-hydroxylation of 4-hydroxypheny1propanoid carboxylic acids by particulate preparations from potato tubers. Z. Naturforsch 41c:56–60.

    Google Scholar 

  37. Duke, S.O., Vaughn, K.C. 1982. Lack of involvement of polyphenol oxidase in ortho-hydroxylation of phenolic compounds in mung bean seedlings. Physiol. Plant. 54:381–385.

    CAS  Google Scholar 

  38. Sherman, T. D., Vaughn, K. C., Duke, S.O. 1991. A limited survey of the phylogenetic distribution of polyphenol oxidase. Phytochemistry 30:2499–2506.

    CAS  Google Scholar 

  39. Sato, M. 1967. Metabolism of phenolic substances by the chloroplasts. III. Phenolase as an enzyme concerning the formation of esculetin. Phytochemistry 6:1363–1373.

    CAS  Google Scholar 

  40. Ohashi, H., Yamamoto, E., Lewis, N.G., Towers, G.H.N. 1987. 5-Hydroxyferulic acid in Zea mays and Hordeum vulgare cell walls. Phytochemistry 26:1915–1916.

    CAS  Google Scholar 

  41. Kuroda, H. 1983. Comparative studies on O-methyltransferases involved in lignin biosynthesis. Wood Research 69:91–135.

    CAS  Google Scholar 

  42. Kuroda, H., Shimada, M., Higuchi, T. 1975. Purification and properties of O-methyltransferase involved in the biosynthesis of gymnosperm lignin. Phytochemistry 14:1759–1763.

    CAS  Google Scholar 

  43. Hermann, C., Legrand, M., Geoffroy, P., Fritig, B. 1987. Enzymatic synthesis of lignin: Purification to homogeneity of the three O-methyltransferases of tobacco and production of specific antibodies. Arch. Biochem. Biophys. 253:367–376.

    PubMed  CAS  Google Scholar 

  44. Schmitt, D., Pakusch, A. E., Matern, U. 1991. Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA-3-O-methyltransferase, an enzyme involved in disease resistance. J. Biol. Chem. 266:17416–17423.

    PubMed  CAS  Google Scholar 

  45. Kuroda, H., Shimada, M., Higuchi, T. 1981. Characterization of a lignin-specific O-methyltransferase in aspen wood. Phytochemistry 20:2635–2639.

    CAS  Google Scholar 

  46. Bugos, R.C., Chiang, V.L.C., Campbell, W.H. 1991. Seasonal expression of a lignin specific O-methyltransferase cloned from aspen developing xylem. Plant Physiol. 96(1s):84.

    Google Scholar 

  47. Gowri, G., Bugos, R.C., Campbell, W.H., Maxwell, C.A., Dixon, R.A. 1991. Stress responses in alfalfa (Medicago saliva L.). X. Molecular cloning and expression of S-adenosyl-L-Methionine: Caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 97:7–14.

    PubMed  CAS  Google Scholar 

  48. Knobloch, K.-H., Hahlbrock, K. 1975. Isoenzymes of p-coumarate:CoA ligase from cell suspension culture of Glycine max. Eur. J. Biochem. 52:311–320.

    PubMed  CAS  Google Scholar 

  49. Wallis, P.J., Rhodes, M.J.C. 1977. Multiple forms of hydroxycinnamate:CoA ligase in etiolated pea seedlings. Phytochemistry 16:1891–1894.

    CAS  Google Scholar 

  50. Ranjeva, R., Boudet, A.M., Faggion, R. 1976. Phenolic metabolism in petunia tissues. IV. Properties of p-coumarate: coenzyme A ligase isoenzymes. Biochimie 58:1255–1262.

    PubMed  CAS  Google Scholar 

  51. Grand, C., Boudet, A., Boudet, A.M. 1983. Isoenzymes of hydroxycinnamate:CoA ligase from poplar stems. Properties and tissue distribution. Planta 158:225–229.

    CAS  Google Scholar 

  52. Lozoya, E., Hoffmann, H., Douglas, C., Schulz, W., Scheel, D., Hahlbrock, K. 1988. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur. J. Biochem. 176:661–667.

    PubMed  CAS  Google Scholar 

  53. Douglas, C., Hoffmann, H., Schulz, W., Hahlbrock, K. 1987. Structure and elicitor or U.V.-light stimulated expression of two 4-coumarate:CoA ligase genes in parsley. EMBO J. 6:1189–1195.

    PubMed  CAS  Google Scholar 

  54. Wengenmayer, H., Ebel, J., Grisebach, H. 1976. Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA:NADPH reductase from cell suspension cultures of soybean (Glycine max). Eur. J. Biochem. 65:529–536.

    PubMed  CAS  Google Scholar 

  55. Lüderitz, T., Grisebach, H. 1981. Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol: NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur. J. Biochem. 119:115–124.

    PubMed  Google Scholar 

  56. Sarni, F., Grand, C., Boudet, A.M. 1984. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur. J. Biochem. 139:259–265.

    PubMed  CAS  Google Scholar 

  57. Mansell, R.L., Gross, G.G., Stöckigt, J., Franke, H., Zenk, M.H. 1974. Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochemistry 13:2427–2435.

    CAS  Google Scholar 

  58. Wyrambik, D., Grisebach, H. 1975. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cellsuspension cultures. Eur. J. Biochem. 59:9–15.

    PubMed  CAS  Google Scholar 

  59. Kutsuki, H., Shimada, M., Higuchi, T. 1982. Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21:19–23.

    CAS  Google Scholar 

  60. Grand, C., Sarni, F., Lamb, C.J. 1987. Rapid induction by fungal elicitor of the synthesis of cinnamyl-alcohol dehydrogenase, a specific enzyme of lignin synthesis. Eur. J. Biochem. 169:73–77.

    PubMed  CAS  Google Scholar 

  61. Walter, M.H., Grima-Pettenati, J., Grand, C., Boudet, A.M., Lamb, C.J. 1988. Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc. Natl. Acad. Sci. USA 85:5546–5550.

    PubMed  CAS  Google Scholar 

  62. Walter, M.H., Grima-Pettenati, J., Grand, C., Boudet, A.M., Lamb, C.J. 1990. Extensive sequence similarity of the CAD4 (cinnamyl-alcohol dehydrogenase) to a maize malic enzyme. Plant Mol. Biol. 15:525–526.

    CAS  Google Scholar 

  63. Van Doorsselaere, J., Villarroel, R., Van Montagu, M., Inze, D. 1991. Nucleotide sequence of a cDNA encoding malic enzyme from poplar. Plant Physiol. 96:1385–1386.

    PubMed  Google Scholar 

  64. O’malley, D. M, Porter, S., Sederoff, R.R. 1992. Purification characterization and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol. 98(in press)

    Google Scholar 

  65. Harmatha, J., Lübke, H., Rybarik, I., Mähdalik, M. 1977. Cis-coniferyl alcohol and its glucoside from the bark of beech (Fagus silvatica L.). Collect. Czech. Chem. Commun. 43:774–780.

    Google Scholar 

  66. Morelli, E., Rej, R.N., Lewis, N.G., Just, G., Towers, G.H.N. 1986. Cis-monolignols in Fagus grandifolia and their possible involvement in lignification. Phytochemistry 25:1701–1705.

    CAS  Google Scholar 

  67. Lewis, N.G., Inciong, Ma.E.J., Ohashi, H., Towers, G.H.N., Yamamoto, E. 1988. Exclusive accumulation of Z-isomers of monolignols and their glucosides in bark of Fagus grandifolia. Phytochemistry 27:2119–2121.

    PubMed  CAS  Google Scholar 

  68. Lewis, N.G., Dubelsten, P., Eberhardt, T.L., Yamamoto, E., Towers, G.H.N. 1987. The E/Z isomerization step in the biosynthesis of Z-coniferyl alcohol in Fagus grandifolia. Phytochemistry 26:2729–2734.

    CAS  Google Scholar 

  69. Lewis, N.G., Inciong, Ma, E.J., Dhara, K.P., Yamamoto, E. 1989. High-performance liquid chromatographic separation of E- and Z-monolignols and their glucosides. J. Chromatogr. 479:345–352.

    CAS  Google Scholar 

  70. Yamamoto, E., Inciong, Ma.E.J., Davin, L.B., Lewis, N.G. 1990. Formation of cis-coniferin in cell-free extracts of Fagus grandifolia Ehrh bark. Plant Physiol. 94:209–213.

    PubMed  CAS  Google Scholar 

  71. Whiting, D.A. 1985. Lignans and neolignans. Nat. Prod. Rep. 2:191–212.

    CAS  Google Scholar 

  72. Macrae, W.D., Towers, G.H.N. 1984. Biological activities of lignans. Phytochemistry 23:1207–1220.

    CAS  Google Scholar 

  73. Whiting, D.A. 1987. Lignans, neolignans and related compounds. Nat. Prod. Rep. 4:499–525.

    PubMed  CAS  Google Scholar 

  74. Whiting, D.A. 1990. Lignans, neolignans and related compounds. Nat. Prod. Rep. 7:349–364.

    CAS  Google Scholar 

  75. El-Feraly, F.S., Cheatham, S.F., Breedlove, R.L. 1983. Antimicrobial neolignans of Sassafras randaiense roots. J. Nat. Prod. 46:493–498.

    CAS  Google Scholar 

  76. Nakatani, N., Ikeda, K., Kikuzaki, H., Kido, M., Yamaguchi, Y. 1988. Diaryldimethylbutane lignans from Myristica argentea and their antimicrobial action against Streptococcus mutans. Phytochemistry 27:3127–3129.

    CAS  Google Scholar 

  77. Arnone, A., Di Modugno, V., Nasini, G., Venturini, I. 1988. Isolation and structure of new active neolignans and norneolignans from Ratanhia. Gaz. Chim. Ital. 118:675–682.

    CAS  Google Scholar 

  78. Takasugi, M., Katui, N. 1986. A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25:2751–2752.

    CAS  Google Scholar 

  79. Barata, L.E.S., Baker, P.M., Gottlieb, O.R., Ruveda, E.A. 1978. Neolignans of Virola surinamensis. Phytochemistry 17:783–786.

    CAS  Google Scholar 

  80. Shizuri, Y., Nakamura, K., Yamamura, S., Ohba, S., Yamashita, H., Saito, Y. 1986. Total syntheses of isodihydrofutoquinol A, futoquinol, and isofutoquinol A and B. Tetrahedron Lett. 27:727–730.

    CAS  Google Scholar 

  81. Harmatha, J., Nawrot, J. 1984. Comparison of the feeding deterrent activity of some sesquiterpene lactones and a lignan lactone towards selected insect storage pests. Biochem. Syst. Ecol. 12:95–98.

    CAS  Google Scholar 

  82. Tatematsu, H., Kurokawa, M., Niwa, M., Hirata, Y. 1984. Piscicidal constituents of Stellera chamaejasme L. II. Chem. Pharm. Bull. 32:1612–1613.

    CAS  Google Scholar 

  83. Munakata, K., Marumo, S., Ohta, K. 1965. Justicidin A and B, the fish-killing components of Justicia hayatai var. Decumbens. Tetrahedron Lett. 47:4167–4170.

    Google Scholar 

  84. Binns, A.N., Chen, R.H., Wood, H.N., Lynn, D.G. 1987. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proc. Natl. Acad. Sci. USA 84:980–984.

    PubMed  CAS  Google Scholar 

  85. Saito, H., Yoshikawa, H., Nishimura, Y., Kondo, S., Takeuchi, T., Umezawa, H. 1986. Studies on lignan lactone antitumor agents. I. Synthesis of aminoglycosidic lignan variants related to podophyllotoxin. Chem. Pharm. Bull. 34:3733–3740.

    PubMed  CAS  Google Scholar 

  86. Saito, H., Nishimura, Y., Kondo, S., Takeuchi, T., Umezawa, H. 1988. Studies on lignan lactone antitumor agents. IV. Synthesis of glycosidic lignan variants related to α-peltatin. Bull. Chem. Soc. Jpn. 61:1259–1263.

    CAS  Google Scholar 

  87. Saito, H., Nishimura, Y., Kondo, S., Komuro, K., Takeuchi, T. 1988. Studies on lignan lactone antitumor agents. V. 1-O-(aminoethyl) ether of 4’-O-demethyl-1-epipodophyllotoxin. Bull. Chem. Soc. Jpn. 61:2493–2497.

    CAS  Google Scholar 

  88. Fukamiya, N., Lee, K.-H. 1986. Antitumor agents, 81. Justicidin-A and diphyllin, two cytotoxic principles from Justicia procumbens. J. Nat. Prod. 49:348–350.

    PubMed  CAS  Google Scholar 

  89. Badawi, M.M., Handa, S.S., Kinghorn, A.D., Cordell, G.A., Farnsworth, N.R. 1983. Plant anticancer agents XXVII: Antileukemic and cytotoxic constituents of Dirca occidentalis (Thymelaeaceae). J. Pharm. Sci. 72:1285–1287.

    PubMed  CAS  Google Scholar 

  90. Fang, X., Nanayakkara, N.P.D., Phoebe, C.H.JR., Pezzuto, J.M., Kinghorn, A.D., Farnsworth, N.R. 1985. Plant anticancer agents XXXVII. Constituents of Amanoa oblongifolia. Planta Medica 51:346–347.

    PubMed  CAS  Google Scholar 

  91. Duh, C.-Y., Phoebe, C.H. JR., Pezzuto, J.M., Kinghorn, A.D., Farnsworth, N.R. 1986. Plant anticancer agents XLII. Cytotoxic constituents from Wikstroemia elliptica. J. Nat. Prod. 49:706–709.

    PubMed  CAS  Google Scholar 

  92. Le Quesne, P.W., Larrahondo, J.E., Raffauf, R.F. 1980. Antitumor plants X. Constituents of Nectandra rigida. J. Nat. Prod. 43:353–359.

    PubMed  Google Scholar 

  93. Tomioka, K., Ishiguro, T., Mizuguchi, H., Komeshima, N., Koga, K., Tsukagoshi, S., Tsuruo, T., Tashiro, T., Tanida, S., Kishi, T. 1991. Absolute structure-cytotoxic activity relationships of steganacin congeners and analogues. J. Med. Chem. 34:54–57.

    PubMed  CAS  Google Scholar 

  94. Bedows, E., Hatfield, G.M. 1982. An investigation of the antiviral activity of Podophyllum peltatum. J. Nat. Prod. 45:725–729.

    PubMed  CAS  Google Scholar 

  95. Nikaido, T., Ohmoto, T., Kinoshita, T., Sankawa, U., Nishibe, S., Hisada, S. 1981. Inhibition of cyclic AMP phosphodiesterase by lignans. Chem. Pharm. Bull. 29:3586–3592.

    PubMed  CAS  Google Scholar 

  96. Bernard, C.-B., Arnason, J.T., Philogene, B.J.R., Lam, J., Waddell, T. 1989. Effect of lignans and other secondary metabolites of the Asteraceae on the mono-oxygenase activity of the European corn borer. Phytochemistry 28:1373–1377.

    CAS  Google Scholar 

  97. Nishibe, S., Kinoshita, H., Takeda, H., Okano, G. 1990. Phenolic compounds from stem bark of Acanthaponax senticosus and their pharmalogical effect in chronic swimming stressed rats. Chem. Pharm. Bull. 38:1763–1765.

    PubMed  CAS  Google Scholar 

  98. Takeda, S., Arai, I., Kase, Y., Ohkura, Y., Hasegawa, M., Sekiguchi, Y., Sudo, K., Aburada, M., Hosoya, E. 1987. Pharmacological studies on antihepatotoxic action of (+)-(6S,7S,R-Biar)-5,6,7,8-tetrahydro-1,2,3,12-tetramethoxy-6,7-dimethyl-10,11-methylenedioxy-6-dibenzo[a,c]icyclooctenol (TJN-101), a lignan component of Schisandra fruits. Influences of resolvents on the efficacy of TJN-101 in the experimental acute hepatic injuries. Yakugaku Zasshi 107:517–524.

    PubMed  CAS  Google Scholar 

  99. Ikeya, Y., Taguchi, H., Mitsuhashi, H., Takeda, H., Kase, Y., Aburaba, M. 1988. A lignan from Schizandra chinensis. Phytochemistry 27:569–573.

    CAS  Google Scholar 

  100. Axelson, M., Sjövall, J., Gustafsson, B.E., Setchell, K.D.R. 1982. Origin of lignans in mammals and identification of a precursor from plants. Nature 298:659–660.

    PubMed  CAS  Google Scholar 

  101. Bannwart, C., Adlercreutz, H., Wähälä, K., Brunow, G., Hase, T. 1989. Detection and identification of the plant lignans, lariciresinol, isolariciresinol, and secoisolariciresinol in human urine. Clin. Chim. Acta 180:293–302.

    CAS  Google Scholar 

  102. Adlercreutz, H., Hockerstadt, K., Bannwart, C., Hamailen, E., Fotsis, T., Bloigu, S. 1988. Association between dietary fiber, urinary excretion of lignans and isoflavonic phytoestrogens, and plasma non-protein bound sex hormones in relation to breast cancer. Prog. Cancer Res. Ther. 35 (Horm. Cancer 3):409–412.

    Google Scholar 

  103. Adlercreutz, H. 1984. Does fiber-rich food containing animal lignan precursors protect against both colon and breast cancer? An extension of the “Fiber hypothesis”. Gastroenterology 86:761–764.

    PubMed  CAS  Google Scholar 

  104. Schröder, H.C., Merz, H., Steffen, R., Müller, W.E.G., Sarin, P.S., Trumm, S., Schulz, J., Eich, E. 1990. Differential in vitro anti-HIV activity of natural lignans. Z. Naturforsch. 45c:1215–1221.

    Google Scholar 

  105. Rahman, M.M.A., Dewick, P.M., Jackson, D.E., Lucas, J.A. 1990. Biosynthesis of lignans in Forsythia intermedia. Phytochemistry 29:1841–1846.

    CAS  Google Scholar 

  106. Setchell, K.D.R., Adlercreutz, H. 1988. Mammalian lignans and phytoestrogens. Recent studies on their formation, metabolism and biological role in health and disease. In: Gut Flora in Toxicology and Cancer (I. R. Rowland, ed.) Academic Press, London, pp. 315–345.

    Google Scholar 

  107. Rao, C.B.S. 1978. Chemistry of lignans. Andrha University Press, Waltair, India, pp. 377.

    Google Scholar 

  108. Kitagawa, S., Nishibe, S., Benecke, R., Thieme, H. 1988. Phenolic compounds from Forsythia leaves II. Chem. Pharm. Bull. 36:3667–3670.

    CAS  Google Scholar 

  109. Umezawa, T., Davin, L.B., Yamamoto, E., Kingston, D.G.I., Lewis, N.G. 1990. Lignan biosynthesis in Forsythia species. J. Chem. Soc., Chem. Comm. 1405–1408.

    Google Scholar 

  110. Umezawa, T., Davin, L.B., Lewis, N.G. 1991. Formation of the lignans (-)-secoisolariciresinol and (-)-matairesinol with Forsythia intermedia cell-free extracts. J. Biol. Chem. 266:10210–10217.

    PubMed  CAS  Google Scholar 

  111. Freudenberg, K. 1965. Lignin: Its constitution and formation from p-hydroxycinnamyl alcohols. Science 148:595–600.

    PubMed  CAS  Google Scholar 

  112. Yamaguchi, H., Nakatsubo, F., Katsura, Y., Murakami, K. 1990. Characterization of (+)- and (-)-syringaresinol di-β-Dglucosides. Holzforschung 44:381–385.

    CAS  Google Scholar 

  113. Lewis, N.G., Davin, L.B. 1992. Stereoselectivity in polyphenol biosynthesis. In: Plant Polyphenols: Biogenesis, Biochemical Properties and Significance. (R.W. Hemingway, P.E. Laks, eds.) Plenum Press (in press).

    Google Scholar 

  114. Umezawa, T., Davin, L.B., Lewis, N.G. 1990. Formation of the lignan, (-)-secoisolariciresinol, by cell-free extracts of Forsythia intermedia. Biochem. Biophys. Res. Comm. 171:1008–1014.

    PubMed  CAS  Google Scholar 

  115. Yamamoto, E., Bokelman, G.H., Lewis, N.G. 1989. Phenylpropanoid metabolism in cell walls. In: Plant Cell Wall Polymers, Biogenesis and Biodegradation. (N.G. Lewis, M.G. Paice, eds.) ACS Symp. Ser. 399:68–88.

    Google Scholar 

  116. Marcinowski, S., Falk, H., Hammer, D.K., Hoyer, B., Grisebach, H. 1979. Appearance and localization of a β-glucosidase hydrolyzing coniferin in spruce (Picea abies) seedlings. Planta 144:161–165.

    CAS  Google Scholar 

  117. Burmeister, G., Hösel, W. 1981. Immunohistochemical localization of β-glucosidases in lignin and isoflavone metabolism in Cicer arietinum L. seedlings. Planta 152:578–586.

    CAS  Google Scholar 

  118. Freudenberg, K. 1968. The constitution and biosynthesis of lignin. In: Constitution and Biosynthesis of Lignin: Molecular Biology, Biochemistry and Biophysics. Vol.2. (K. Freudenberg, A.C. Neish, eds.) Springer Verlag., Berlin, pp 47–122.

    Google Scholar 

  119. Marcinowski, S., Grisebach, H. 1978. Enzymology of lignification. Cell wall-bound β-glucosidases for coniferin from spruce (Picea abies) seedlings. Eur. J. Biochem. 87:37–44.

    PubMed  CAS  Google Scholar 

  120. Grisebach, H. 1981. Lignins. In: The Biochemistry of Plants. Vol. 7. Secondary Plant Products. (E.E. Conn, ed.) Academic Press, New York, pp. 457–478.

    Google Scholar 

  121. Hösel, W. 1981. Glycosylation and glycosidases. In: The Biochemistry of Plants. Vol. 7. Secondary Plant Products. (E.E. Conn, ed.) Academic Press, New York, pp. 725–753.

    Google Scholar 

  122. Marcinowski, S., Grisebach, H. 1977. Turnover of coniferin in pine seedlings. Phytochemistry 16:1665–1667

    CAS  Google Scholar 

  123. Hösel, W., Surholt, E., Borgmann, E. 1978. Characterization of β-glucosidase isoenzymes possibly involved in lignification from chick pea (Cicer arietinum L.) cell suspension cultures. Eur. J. Biochem. 84:487–492.

    PubMed  Google Scholar 

  124. Hösel, W., Fiedler-Preiss, A., Borgmann, E. 1982. Relationship of coniferin β-glucosidase to lignification in various plant cell suspension cultures. Plant Cell Tissue Organ Cult. 1:137–148.

    Google Scholar 

  125. Lagrimini, L.M., Burkhart, W., Moyer, M., Rothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA 84:7542–7546.

    PubMed  CAS  Google Scholar 

  126. Mäder, M., Nessel, A., Bopp, M. 1977. Über die physiologische Bedeutung der Peroxidase Isoenzymgruppen des Tabaks anhand einiger biochemischer Eigenschaften II. Z. Pflanzenphysiol. 82:247–260

    Google Scholar 

  127. Lagrimini, L.M., Rothstein, S. 1987. Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 84:438–442.

    PubMed  CAS  Google Scholar 

  128. Lagrimini, L.M., Bradford, S., Rothstein, S. 1990. Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18.

    PubMed  CAS  Google Scholar 

  129. Rothstein, Si., Lagrimini, L.M. 1989. Silencing gene expression in plants. In: Oxford Surveys of Plant Molecular and Cell Biology (B.J. Miflin, H.F. Miflin, eds.) Oxford University Press 6:221–246.

    Google Scholar 

  130. Lagrimini, L.M. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes. In: Molecular and Physiological Aspects of Plant Peroxidases. II. (C. Penel, T. Gaspar, J. Lobarzewski, eds.) (in press).

    Google Scholar 

  131. Higuchi, T., Ito, Y., Shimada, M., Kawamura, J. 1967. Chemical properties of milled wood lignin of grasses. Phytochemistry 6:1551–1556.

    CAS  Google Scholar 

  132. Scalbert, A., Monties, B., Lallemand, J.-Y., Guittet, E., Rolando, C. 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24:1359–1362.

    CAS  Google Scholar 

  133. Terashima, N., Fukushima, K. 1989. Biogenesis and structure of macromolecular lignin in the cell wall of tree xylems as studied by microautoradiography. In: Plant Cell Wall Polymers, Biogenesis and Biodegradation. (N.G. Lewis, M.G. Paice, eds.) ACS Symp. Ser. 399:160–168.

    Google Scholar 

  134. Morrisson, I.M. 1972. Improvements of the acetyl bromide technique to determine lignin and digestibility and its application to legumes. J. Sci. Food Agric. 23:1463–1469.

    Google Scholar 

  135. Lewis, N.G., Yamamoto, E., Wooten, J.B., Just, G., Ohashi, H., Towers, G.H.N. 1987. Monitoring biosynthesis of wheat cell-wall phenylpropanoids in situ. Science 237:1344–1346.

    PubMed  CAS  Google Scholar 

  136. Lewis, N.G., Razal, R.A., Dhara, K.P., Yamamoto, E., Bokelman, G.H., Wooten, J.B. 1988 Incorporation of [2-13C] ferulic acid, a lignin precursor, into Leucaena leucocephala and its analysis by solid-state 13C-NMR. J. Chem. Soc. Chem. Commun. 1626–1628.

    Google Scholar 

  137. Lewis, N.G. 1988. Lignin biosynthesis, biodegradation and utilization. Bull. Liaison Groupe Polyphenols 14:398–410.

    Google Scholar 

  138. Lewis, N.G., Razal, R.A., Yamamoto, E., Bokelman, G.H., Wooten, J.B. 1989. 13C-Specific labelling of lignin in intact plants. In: Plant Cell Wall Polymers: Biogenesis and Biodegradation. (N.G. Lewis, M.G. Paice, eds.) ACS Symp. Ser. 399:68–88.

    Google Scholar 

  139. Kolattukudy, P.E. 1984. Biochemistry and function of cutin and suberin. Can. J. Bot. 62:2918–2933.

    CAS  Google Scholar 

  140. Kolattukudy, P.E., Kronman, K., Poulose, A.J. 1975. Determination of structure and composition of suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet and sweet potato by combined gas-liquid chromatography and mass spectrometry. Plant Physiol. 55:567–573.

    PubMed  CAS  Google Scholar 

  141. Holloway, P.J. 1972. The composition of suberin from the corks of Quercus suber L. and Betula pendula Roth. Chem. Phys. Lipids 9:158–170.

    CAS  Google Scholar 

  142. Litvay, J.D., Krahmer, R.L. 1977. Wall-layering in Douglas fir cork cells. Wood Sci. 9:167–173.

    Google Scholar 

  143. Tippett, J.T., O’brien, T.P. 1976. The structure of eucalypt roots. Aust. J. Bot. 24:619–632.

    Google Scholar 

  144. Scott, M.G., Peterson, R.L. 1979. The root endoderma in Ranunculus acris. II. Histochemistry of the endodermis and the synthesis of phenolic compounds in roots. Can. J. Bot. 57:1063–1077.

    CAS  Google Scholar 

  145. Pearce, R.B., Rutherford, J. 1981. A wound-associated suberized barrier to the spread of decay in the sapwood of oak (Quercus robur 1.). Physiol. Plant Pathol. 19:359–369.

    Google Scholar 

  146. Kolattukudy, P.E., Espelie, K.E. 1985. Biosynthesis of cutin, suberin and associated waxes. In: Biosynthesis and Biodegradation of Wood Components. (T. Higuchi, ed.) Academic Press, Orlando pp. 161–207.

    Google Scholar 

  147. Garbow, J.R., Ferrantello, L.M., Stark, R.E. 1989. 13C Nuclear magnetic resonance study of suberized potato cell wall. Plant Physiol. 90:783–787.

    PubMed  CAS  Google Scholar 

  148. Jensen, W., Fremer, K.E., Sierildä, P., Wartiovaara, V. 1963. The chemistry of bark. In: The Chemistry of Wood. (B.L. Browning, ed.) Intersci. Publ. New York, London, pp. 587–666.

    Google Scholar 

  149. Holloway, P.J. 1972. The composition of suberin from the corks of Quercus suber L. and Betula pendula Roth. Chem. Phys. Lipids 9:158–170.

    CAS  Google Scholar 

  150. Ribas, I. 1942. Ion 2, No. 6, 25.

    CAS  Google Scholar 

  151. Hergert, H.L. 1958. Chemical composition of cork from White fir bark. Forest. Prod. J., 335–339.

    Google Scholar 

  152. Guillemonat, A., Traynard, J.-C. 1962. Sur la constitution chimique du liége. IV Mémoire: Structure de la phellochryséine, Mémoires Présentés à la Société Chimique 142–144.

    Google Scholar 

  153. Swan, E.P. 1968. Alkaline ethanolysis of extractive-free western red cedar bark. TAPPI 51:301–304.

    CAS  Google Scholar 

  154. Adamovics, J.A., Johnson, G., Stermitz, F.R. 1977. Ferulates from cork layers of Solanum tuberosum and Pseudotsuga menziesii. Phytochemistry 16:1089–1090.

    CAS  Google Scholar 

  155. Laver, M.L., Fang, H.L. 1989. Ferulic acid esters from bark of Pseudotsuga menziesii. J. Agric. Food Chem. 37(1):114–116.

    CAS  Google Scholar 

  156. Ries-Kautt, M., Kintzinger, J.P., Albrecht, P. 1988. Omegaferuloyloxy acids, a novel class of polar lipids in peat soil. Naturwissenschaften 75:305–307.

    CAS  Google Scholar 

  157. Riley, R.G., Kolattukudy, P.E. 1975. Evidence for covalently attached p-coumaric acid and ferulic acid in cutins and suberins. Plant Physiol. 56:650–654.

    PubMed  CAS  Google Scholar 

  158. Cottle, W., Kolattukudy, P.E. 1982. Biosynthesis, deposition and partial characterization of potato suberin phenolics. Plant Physiol. 69:393–399.

    PubMed  CAS  Google Scholar 

  159. Borg-Olivier, O., Monties, B. 1989. Caractérisation des lignines, acides phénoliques et tyramine dans les tissus subérisés du périderme naturel et du périderme de blessure de tubercule de pomme de terre. C.R. Acad. Sci. Paris Ser. III 308:141–147.

    CAS  Google Scholar 

  160. Esquerré-Tugayé, M.-T., Lamport, D.T.A. 1979. Cell-surfaces in plant-microorganism interactions. I. A structural investigation of cell-wall hydroxyproline-rich glycoproteins which accumulate in fungus infected plants. Plant Physiol. 64:314–319.

    PubMed  Google Scholar 

  161. Hammerschmidt, R. 1984. Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiol. Plant Pathol. 24:33–42.

    CAS  Google Scholar 

  162. Stark, R.E., Zlotnik-Mazori, T., Ferrantello, L.M., Garbow, J.R. 1989. Molecular structure and dynamics of intact plant polyesters. Solid-state NMR studies. In: Plant Cell Wall Polymers: Biogenesis and Biodegradation. (N.G. Lewis, M.G. Paice, eds.) ACS Symp. Ser. 399:214–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davin, L.B., Lewis, N.G. (1992). Phenylpropanoid Metabolism: Biosynthesis of Monolignols, Lignans and Neolignans, Lignins and Suberins. In: Stafford, H.A., Ibrahim, R.K. (eds) Phenolic Metabolism in Plants. Recent Advances in Phytochemistry, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3430-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3430-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6517-4

  • Online ISBN: 978-1-4615-3430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics