Skip to main content

Interferometry with Metastable Rare Gas Atoms

  • Chapter
Quantum Measurements in Optics

Part of the book series: NATO ASI Series ((NSSB,volume 282))

  • 394 Accesses

Abstract

Matter wave interferometry is a well established field in physics. Interferometers with de Broglie waves have been demonstrated for electrons1 and neutrons,2 and recently also for atoms.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Marton, J. A. Simpson, and J. A. Suddeth, Electron beam interferometer, Phys. Rev. 90:490 (1953).

    Article  Google Scholar 

  2. H. Maier-Leibnitz and T. Springer, Ein Interferometer für langsame Neutronen, Z. Physik 167:386 (1962).

    Article  Google Scholar 

  3. O. Carnal, A. Faulstich, T. Sleator, and J. Mlynek, Demonstration eines Atominterferometers mit einer Young’shen Doppelspaltanordnung, Verhand. DPG (VI), 26:867 (1991); O. Carnal and J. Mlynek, Young’s double slit experiment with atoms: a simple atom interferometer, to appear in Phys. Rev. Lett.

    Google Scholar 

  4. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, and D.E. Pritchard, An interferometer with atoms, submitted to Phys. Rev. Lett.; F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and Ch.J. Bordé, Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter wave interferometer’, submitted to Phys. Rev. Lett.

    Google Scholar 

  5. Proc. of the Int. Workshop on Matter Wave Interferometry, G. Badurek, H. Rauch and A. Zeilinger, editors, Physica B 151 (1988), and references therein.

    Google Scholar 

  6. P.L. Gould, G.A. Ruff and D.E. Pritchard, Phys. Rev. Lett. 56:827 (1986); D.W. Keith, M.L. Schattenburg, H.I. Smith, and D.E. Pritchard Phys. Rev. Lett. 61:1580 (1988); O. Carnal, A. Faulstich and J. Mlynek, submitted to Appl. Phys. B.

    Google Scholar 

  7. T. Sleator et al., to be published.

    Google Scholar 

  8. See, e.g., M. Brune, S. Haroche, V. Lefevre, J.M. Raimond, and N. Zagury, Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection, Phys. Rev. Lett. 65:976 (1990), and references therein.

    Article  Google Scholar 

  9. See, e.g. J. Dalibard and C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser light: the dipole force revisited, J. Opt. Soc. Am. B 2:1707 (1985)

    Article  Google Scholar 

  10. S. Stenholm, “Foundations of laser spectroscopy”, Wiley, New York (1984) p. 163.

    Google Scholar 

  11. A.P. Kastinov, Recoil effect in a strong resonant field, Soy. Phys.-JETP 40:825 (1975)

    Google Scholar 

  12. S. Stenholm, Redistribution of molecular velocities by optical processes, Appl. Phys. 15:287 (1978); J. Dalibard and C. Cohen-Tannoudji, Atomic motion in laser light: connection between semiclassical and quantum descriptions, J. Phys. B 18:1661 (1985).

    Google Scholar 

  13. See, e.g., M.O. Scully and K. Drühl, Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics, Phys. Rev. A 25:2208 (1982).

    Article  Google Scholar 

  14. J. Opt. Soc. Am. B6, (1989) Special issue on laser cooling and trapping of atoms

    Google Scholar 

  15. T. Haslwanter and J. Mlynek, Laser cooling in the center of mass system: A proposal for the creation of a monoenergetic atomic beam, Ann. Phys. 47:583, (1990)

    Article  Google Scholar 

  16. W. Ertmer, R. Blatt, J.L. Hall and M. Zhu, Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal, Phys. Rev. Lett. 54, 996, (1985)

    Article  Google Scholar 

  17. W.D. Philips and H. Metcalf, Laser deceleration of an atomic beam Phys. Rev. Lett. 48, 596, (1982)

    Article  Google Scholar 

  18. A. Faulstich et al., to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sleator, T., Carnal, O., Faulstich, A., Mlynek, J. (1992). Interferometry with Metastable Rare Gas Atoms. In: Tombesi, P., Walls, D.F. (eds) Quantum Measurements in Optics. NATO ASI Series, vol 282. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3386-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3386-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6495-5

  • Online ISBN: 978-1-4615-3386-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics