Skip to main content

Physical Forces and Pattern Formation in Limb Development

  • Chapter
Developmental Patterning of the Vertebrate Limb

Part of the book series: NATO ASI Series ((NSSA,volume 205))

Abstract

For those cells of the body whose differentiated cell type is determined while they are at one position, but which then move elsewhere to form their definitive anatomical structures, the geometry of these structures must be explained in terms of whatever physical forces are responsible for moving the cells into their eventual positions. Positional control of gene expression is not enough. The skeletal muscle cells of the limb are a good example: their cells are known to be derived originally from the somites, from which they migrate into the developing limb bud (Chevallier, Kieny and Mauger, 1977). In principle, the forces responsible might include those of growth, adhesion, active cellular locomotion or other processes; but this article is concerned specifically with the ubiquitous locomotory forces called “traction”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rerefences

  • Ball, E. E., Ho, R. K. and Goodman, C. S., 1985, Muscle development in the grasshopper embryo I. Muscles, nerves and apodemes in the metathoracic leg, Dev. Biol. 111: 383–398.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, R.N., 1935, The sternalis muscle in American whites and Negroes, Anat. Rec. 61: 413–426

    Article  Google Scholar 

  • Beloussov, L. V., 1980, The role of tensile fields and contact cell polarization in the morphogenesis of amphibian axial rudiments, Wilh. Roux’ Arch Dev. Biol. 188, 1–7.

    Article  Google Scholar 

  • Beloussov, L. V., Dorfman, J. G. and Cherdanzev, V. G., 1975, Mechanical stresses and morphological patterns in amphibian embryos, J. Embyol. exp. Morph. 34, 559–174 (1980)

    Google Scholar 

  • Chevallier, A., Kieny, M. and Mauger, A., 1977, Limb-somite relationship: origin of the limb musculature, J. Embryol. exp. Morph. 41, 245–58

    PubMed  CAS  Google Scholar 

  • Elsdale, T. and Bard, J., 1972 Collagen substrata for studies on cell behaviour, J. Cell Biol. 41: 298–305.

    Article  Google Scholar 

  • Harris, A. K., 1988, Fibroblasts and myofibroblasts, Methods in Enzymology 163: 623–642

    Article  PubMed  CAS  Google Scholar 

  • Harris, A.K., Stopak D. and Wild P., 1981, Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290:249–251.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A.K., Stopak D. and Warner, P., 1984, Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model, J. Embryol. exp. Morph. 80: 1–20.

    PubMed  CAS  Google Scholar 

  • Harris A.K., Wild P. and Stopak D., 1980, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science. 208:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Jellies, J., 1990, Muscle assembly in simple systems, Trends in Neurosciences 13: 126–131

    Article  PubMed  CAS  Google Scholar 

  • Katzberg, A. A., 1951, Distance as a factor in the development of attraction fields between growing tissues in culture, Science 114: 431–432.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G. F., Murray, J. D. and Harris, A. K., 1983, Mechanical aspects of mesenchymal morphogenesis, J. Embryol. exp. Morph. 78: 83–125.

    PubMed  CAS  Google Scholar 

  • Shellswell, G. B. and Wolpert, L., 1977, The pattern of muscle and tendon development in the chick wing, in Vertebrate Limb and Somite Development eds. Ede, D. A., Hinchliffe, J. R. and Balls, M. 3rd. S.E.B. Symposium pp. 71–86.

    Google Scholar 

  • Stopak, D. and Harris, A. K., 1982, Connective tissue morphogenesis by fibroblast traction, Developmental Biology 90, 383–398.

    Article  PubMed  CAS  Google Scholar 

  • Stopak, D., Wessells, N. K., and Harris, A. K., 1985, Morphogenetic rearrangement of injected collagen in developing chicken limb buds, Proc. Natl. Acad. Sci. 82.2804–8.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh, H. H., 1982, Dynamic mechanical orientation of skeletal myotubes in vitro, Dev. Biol. 93: 438–443.

    Article  Google Scholar 

  • Weiss, P., 1955, Nervous system. in “Analysis of Development” (B. H. Willier, P. Weiss and V. Hamburger, eds.) pp. 346–401. Saunders, Philadelphia.

    Google Scholar 

  • Weiss, P., 1952, Comments and Communications:“Attraction Fields” between growing tissue cultures, Science 115: 293–295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, A.K. (1991). Physical Forces and Pattern Formation in Limb Development. In: Hinchliffe, J.R., Hurle, J.M., Summerbell, D. (eds) Developmental Patterning of the Vertebrate Limb. NATO ASI Series, vol 205. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3310-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3310-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6457-3

  • Online ISBN: 978-1-4615-3310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics