Skip to main content

Introduction to Data Communications

  • Chapter
Data Communications Principles

Abstract

Data communication has been with us for a long time. Smoke signals, drum beats, and semaphore signals are examples that are commonly given; indeed, semaphore relay may be regarded as the first modern communication network [1]. But the most remarkable example must surely be alphabetical writing. The concept of conveying information by successive choices from a finite alphabet is the very essence of both writing and digital data communication [2]. In fact, many of the ideas of linguistics carry over to information theory, communications, and pattern recognition. It is the purpose of this first chapter, in a book devoted to the principles of data communications, to provide a perspective on the technology of data communications, and to highlight the broad applicability of the foundation technologies of modulation/demodulation, equalization, coding, and synchronization. In this text we will demonstrate the communication-theoretic origin and the broad application of these technologies to a variety of communication media, including the telephone channel, twisted pairs, radio, magnetic recording, and optical fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. From Semaphore to Satellite, The Story of the ITU, International Telecommunications Union, 1965.

    Google Scholar 

  2. R. W. Lucky, Silicon Dreams: Information, Man, and Machine, St. Martins Press, 1989.

    Google Scholar 

  3. N. Abramson, Information Theory and Coding, McGraw-Hill, 1963.

    Google Scholar 

  4. R. Gallager, Information Theory, Wiley, 1968.

    Google Scholar 

  5. R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley, New York, 1987.

    MATH  Google Scholar 

  6. A. S. Tanenbaum, Computer Networks, Prentice-Hall, 1981.

    Google Scholar 

  7. M. Schwartz, Telecommunications Networks, Addison-Wesley, New York, 1986.

    Google Scholar 

  8. J. F. Hayes, Modeling and Analysis of Computer Communication Networks, Plenum Press, New York, 1984.

    Book  Google Scholar 

  9. D. Bertsekes and R. G. Gallager, Data Networks, Prentice-Hall, 1987.

    Google Scholar 

  10. R. E. Kahn, “Resource Sharing Computer Communication Networks,” Proc IEEE, Vol. 60, November 1970.

    Google Scholar 

  11. L. G. Roberts and B. D. Wessler, “Computer Network Development to Achieve Resource Sharing,” AFIPS Conference Proceedings, Vol. 36, 1970.

    Google Scholar 

  12. S. B. Weinstein, “Communication in the Coming Decades,” IEEE Spectrum, Vol. 242, No. 11, pp. 62–67, November 1987.

    Google Scholar 

  13. D. Comer, Internetworking with TCP/IP, Principles, Protocols and Architecture, Prentice-Hall, 1988.

    Google Scholar 

  14. W. Stallings, Data and Computer Communications, Macmillan, New York, 1985.

    Google Scholar 

  15. P. Verma, Editor, ISDN Systems, Prentice-Hall, 1990.

    Google Scholar 

  16. G. D. Schultz, “Anatomy of SNA,” Computerworld, Vol. 15, No. 11a, pp. 35–38, March 1981.

    Google Scholar 

  17. V. L. Hoberecht, “SNA Function Management,” IEEE Trans on Comm, Vol. COM-28, No. 4, April 1980, Reprinted in P. E. Green, Jr, Computer Network Architectures and Protocols, Plenum Press, New York, 1982.

    Google Scholar 

  18. H. R. Rudin, Ed., Special Issue of IEEE Communications Magazine on High-Speed Network Protocols, Vol. 27, No. 6, June 1989.

    Google Scholar 

    Google Scholar 

  19. North American Presentation Level Protocol Syntax (NAPLPS), American National Standard X3.110-1983, American National Standards Institute, New York, 1983.

    Google Scholar 

  20. J. E. White, “ASN.1 and ROS: The Impact of X.400 in OSI,” IEEE J. Selected Areas in Communications, Vol. 7, pp. 1060–1072, September 1989.

    Article  Google Scholar 

  21. Information Sciences Institute, Transmission Control Protocol NIC-RFC 793. DDN Protocol Handbook, Vol.2, pp. 2.179–2.198, September 1981.

    Google Scholar 

  22. Toward a National Research Network, Computer and Science and Technology Board, National Research Council, National Academy Press, Washington, 1989.

    Google Scholar 

  23. J. F. Hayes, “Local Distribution in Computer Communications,” IEEE Communications Magazine, Vol.19, No. 2, pp. 6–14, March 1981. Reprinted in IEEE Communication Society, Tutorials in Modern Communications, V. B. Lawrence, J. L. LoCicero, and L. B. Milstein, Editors, Computer Science Press, 1983. A revised version appears in Advances in Local Area Networks, K. Kummerle, J.O. Limb, and F. Tobagi, Editors, IEEE Press, 1987.

    Google Scholar 

  24. J. F. Hayes and M. Mehemet-Ali, “Random Access Systems — ALOHA’s Progeny,” Canadian Journal of Electrical Engineering, Vol. 14-1, pp. 3–10, January 1989.

    Google Scholar 

  25. R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for Local Computer,” Communications of the ACM, Vol. 19, pp. 395–404, July 1976.

    Article  Google Scholar 

  26. J. F. Shock et al., “Ethernet,” in Advances in Local Area Networks, K. Kummerle, J. O. Limb, and F. A. Tobagi, Editors, IEEE Press, 1987.

    Google Scholar 

  27. ANSI/IEEE Standards 802.1 to 802.6 for Local Area Networks, Wiley Interscience, 1985.

    Google Scholar 

  28. M. R. Finley, Jr., “Optical Fiber in Local Area Networks,” in Advances in Local Area Networks, op. cit.

    Google Scholar 

  29. I. P. Kaminow, “Non-Coherent Photonic Frequency — Multiple Access Networks,” IEEE Network, Vol. 3, No. 2, pp. 4–13, March 1989.

    Article  Google Scholar 

  30. R. A. Linke, “Frequency Division Multiplexed Optical Networks Using Hetrodyne Detection,” ibid.

    Google Scholar 

  31. S. Lee and P. P. Boulton, “The Principles and Performance of Hubnet: a 50 Mbps Glass Fiber Local Area Network,” Special Issue on Local Area Networks, IEEE J. Selected Areas Commun., Vol. SAC-1, pp. 711–721, November 1983.

    Article  Google Scholar 

  32. M. Mehmet-Ali and J. F. Hayes “An Optical Fiber Based Local Backbone Network,” Canadian Journal of Electrical Engineering, Vol. 14, No. 4, pp. 127–133,1989.

    Google Scholar 

  33. A. G. Fraser, “Towards a Universal Data Transport System,” in Advances in Local Area Networks, K. Kummerle, J. O. Limb, and F. Tobagi, Editors, IEEE Press, 1987.

    Google Scholar 

  34. R. M. Newman et al., “The QPSX Man,” IEEE Communications Magazine, Vol. 26, No. 6, pp. 20–28, April 1988.

    Article  Google Scholar 

  35. E. L. Hahne, A. K. Choudhury, and N. F. Maxemchuk, “Improving the Fairness of Dual Queue Dual Bus Networks,” Proc. IEEE Infocom ′90, San Francisco, June 1990.

    Google Scholar 

  36. J. W. Wong, “Throughput of DQDB Networks Under Heavy Load,” EROL/LAN 89, Amsterdam.

    Google Scholar 

  37. M. H. Huber, K. Sawer, and W. Scheodl, “QPSX and FDDI-II Performance Study of High Speed LANS,” EFOC/LAN 88, Amsterdam, June 1988.

    Google Scholar 

  38. F. E. Ross, “An Overview of FDDI: The Fiber Distributed Data Interface,” IEEE Communications Magazine, Vol. 7, No. 7, pp. 1043–1051, September 1989.

    Google Scholar 

  39. M. Goodman, C. Brackett, C. Lo, H. Kobrinski, M. Vecchi, and R. Bulley, “Design and Demonstration of the LAMBDANET™ system: a multiwavelength optical network,” Conference Record IEEE Globecom ′87, Tokyo, June 1987.

    Google Scholar 

  40. A. S. Acampora, M. J. Karol, and M. G. Hluchyj, “Terabit Lightwave Networks: The Multihop Approach,” AT&T Technical Journal, Vol. 66, No. 6, November/December 1987.

    Google Scholar 

  41. M. G. Hluchyj and M. J. Karol, “ShuffleNet: An Application of Generalized Perfect Shuffles to Multihop Lightwave Networks,” INFOCOM ′88, New Orleans, March 1988.

    Google Scholar 

  42. CCITT Blue Book, Vol. III, Fascicle III-5, Integrated Services Digital Network (ISDN), Recommendations of the Series I, IXth Plenary Assembly, Geneva, 1989.

    Google Scholar 

  43. ANSI T1.605-1989, Integrated Services Digital Network (ISDN — Basic Access Interface for S and T Reference Points (Layer 1 Specification), American National Standards Institute, Washington, 1989.

    Google Scholar 

  44. B. T. Doshi and H. Q. Nguyen, “Congestion Control in ISDN Frame Relay Networks,” AT&T Technical Journal, Vol. 67, No. 6, November/December 1988.

    Google Scholar 

  45. Data communication over the telephone network, CCITT Red Book, vol. VIII, Fascicle VIII.1, International Telecommunications Union, Geneva, 1985.

    Google Scholar 

  46. Bell Telephone Laboratories, Inc., Engineering & Operations in the Bell System, third printing, 1978.

    Google Scholar 

  47. B. Fleury, “Asynchronous High Speed Digital Multiplexing,” IEEE Communications Magazine, Vol. 24, No. 8, pp. 17–25, August 1986.

    Article  Google Scholar 

  48. CCITT Blue Book, Vol. III, Fascicle III.3, October 1988, “7 KHz: audio coding within 64 Kbps.”

    Google Scholar 

  49. Telecommunications Transmission Engineering, Vol. 2, Third Edition, Bellcore, 1990.

    Google Scholar 

  50. R. Ballart and Y. C. Ching, “SONET: Now Its the Standard Optical Network,” IEEE Communication Magazine, Vol. 29, No. 3, pp. 8–15, March 1989.

    Article  Google Scholar 

  51. B. Schaffer, “Synchronous and Asynchronous Transfer Modes in the Future ISDN,” Conference Record, ICC ′88.

    Google Scholar 

  52. M. de Prycker, Asynchronous Transfer Mode, Ellis Horwood, 1991.

    Google Scholar 

  53. S. Minzer, “Broadband ISDN and Asynchronous Transfer Mode (ATM),” IEEE Communications Magazine, Vol. 27, No. 9, pp. 17–24, September 1989.

    Article  Google Scholar 

  54. L. Wu and M. Kerne, “Emulating Circuits in a Broadband Packet Network,” Proc. IEEE Globecom ′88.

    Google Scholar 

  55. F. P. Duffy and T. W. Thatcher, “Analog Transmission Performance on the Switched Telecommunications Network,” Bell System Tech. J., Vol. 50, pp. 1311–1347, April 1971.

    Google Scholar 

  56. T. C. Spang, “Loss-noise-echo study of the direct distance dialog network,” Bell System Tech. J., Vol. 55, pp. 1–36, January 1976.

    Google Scholar 

  57. F. P. Duffy et al., “Echo performance of toll telephone connections in the United States,” Bell System Tech. J., Vol. 54, pp. 229–243, February 1975.

    Google Scholar 

  58. Bell System Technical Reference PUB 41008, Transmission Parameters Affecting Voiceband Data Transmission — Description of Parameters, AT&T, 1974.

    Google Scholar 

  59. E. Biglieri, A. Gersho, R. D. Gitlin, and T. Lim, “Adaptive cancellation of nonlinear intersymbol interference,” IEEE J. Selected Areas of Communications, SAC-2, No. 5, 1984.

    Google Scholar 

  60. J. W. Lechleider, “Line codes for digital subscriber lines,” IEEE Communications Magazine, Vol. 27, No. 9, pp. 25–32, September 1989.

    Article  Google Scholar 

  61. W. H. Hayt, Engineering Electromagnetics, McGraw-Hill, 1989.

    Google Scholar 

  62. H. S. Lin and C-P. J. Tzeng, “Full Duplex Data Over Local Loops,” IEEE Communications Magazine, Vol. 26, No. 1, January 1988.

    Google Scholar 

  63. Bell Laboratories, Transmission Systems for Communications, Fifth Edition, 1982.

    Google Scholar 

  64. FCC docket 19311, FCC 74-985, September 19, 1974, revised January 25, 1975.

    Google Scholar 

  65. T. Noguchi, Y. Daido, and J. A. Nossek, “Modulation Techniques for Digital Radio,” IEEE Communications Magazine, Vol. 24, No. 10, pp. 21–30, October 1986.

    Article  Google Scholar 

  66. D. P. Taylor and R. P. Nartreann, “Telecommunications by Digital Radio,” IEEE Communications Magazine, Vol. 24, No. 8, pp. 11–16, August 1986.

    Article  Google Scholar 

  67. W. D. Rummler, R. P. Courts, and M. Liniger, “Multipath Fading Channel Models for Digital Microwave Radio,” IEEE Communications Magazine, Vol. 24, No. 11, pp. 30–42, November 1986.

    Article  Google Scholar 

  68. L. J. Greenstein and M. Shafi, “Outage Calculation Methods for Microwave Digital Radio,” IEEE Communications Magazine, Vol. 25, No. 2, pp. 30–39, February

    Google Scholar 

  69. J. K. Chambelain, F. M. Clayton, H. Sari, and E. Vandamme, “Receiver Techniques for Microwave Digital Radio,” IEEE Communications Magazine, Vol. 24, No. 11, pp. 43–54, November 1986.

    Article  Google Scholar 

  70. V. H. MacDonald, “The Cellular Concept,” Bell System Tech. J., Vol. 58, No. 1, pp. 15–49, January 1979.

    Google Scholar 

  71. E. Lee and D. Messerschmitt, Digital Communication, Kluwer Academic Publishers, 1988.

    Google Scholar 

  72. R. Steele, “The cellular environment of lightwave handheld portables,” IEEE Communications Magazine, Vol. 27, No. 7, pp. 20–29, July 1989.

    Article  Google Scholar 

  73. D. C. Cox, “Portable digital radio communications — an approach to tetherless access,” IEEE Communications Magazine, Vol. 27, No. 7, pp. 30–40, July 1989.

    Article  Google Scholar 

  74. P. S. Henry, R. A. Linke, and A. J. Gnauck, “Introduction to Lightwave Systems,” in Optical Fiber Telecommunications II, edited by S. E. Miller and I. P. Kaminow, Academic Press, 1988.

    Google Scholar 

  75. J. Salz, “Modulation and Detection for Coherent Lightwave Communications,” IEEE Communications Magazine, Vol. 24, No. 6, June 1986.

    Google Scholar 

  76. S. D. Personick, Fiber Optics Technology and Applications, Plenum Press, New York, 1985.

    Google Scholar 

  77. G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of Two-Dimension Signal Constallations in the Presence of Gaussian Noise,” IEEE Trans on Communications, Vol. COM-22, No. 1, January 1974.

    Google Scholar 

  78. G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “On the selection of Two-Dimensional Signal Constellations in the Presence of Phase Jitter and Gaussian Noise,” Bell System Tech. J., Vol. 52, pp. 927–965, July–August 1973.

    Google Scholar 

  79. B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall. 1985.

    Google Scholar 

  80. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill, New York, 1968.

    Google Scholar 

  81. D. D. Falconer, “Adaptive Equalization of Channel Nonlinearities in QAM Data Transmission,” Bell System Tech. J., Vol. 57, pp. 2589–2611, September 1978.

    MATH  Google Scholar 

  82. E. F. O’Neill, Editor, A History of Engineering and Science in the Bell System, AT&T Bell Laboratories, 1985.

    Google Scholar 

  83. P. E. Green, Jr., Fiber Optic Networks, Prentice Hall, New York. 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gitlin, R.D., Hayes, J.F., Weinstein, S.B. (1992). Introduction to Data Communications. In: Data Communications Principles. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3292-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3292-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6448-1

  • Online ISBN: 978-1-4615-3292-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics