Skip to main content

Abstract

The selective functionalization of saturated hydrocarbons which requires the activation of unactivated carbon-hydrogen bonds remains one of the most intriguing subjects of modern chemistry despite the great deal of research interest over the past two decades. The economic and practical functionalization of alkanes is expected to be among the major objectives for the end of this century. Much progress has been achieved in homogeneous and heterogeneous catalysis, in both the liquid and gas phases1,2. Catalytic oxidation of alkanes has been explored using various oxidants. Those conducted with dioxygen under mild conditions are especially rewarding goals2. Amongst the many approaches to the problem, one is based on mimicking nature. Nature’s ability to use dioxygen to oxidize different C-H bonds in a selective manner is attracting chemists from different areas, including bio-, inorganic and organic chemistry. Nature does its job by using enzymes, referred to as oxygenases, which catalyze the oxidation process by directly inserting one or both atoms of dioxygen into the organic substrate giving mainly hydroxyl groups3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Shilov. “Activation of Saturated Hydrocarbons by Transition Metal Complexes”,Reidel, Dordrecht, (1984)

    Google Scholar 

  2. A.E. Shilov. “Activation and Functionalization of Alkanes”, C.L. Hill, ed., Wiley, NY, (1989)

    Google Scholar 

  3. A.E. Shilov, and G.B. Shulpin, Russ. Chem. Rev. ,56:442 (1987);

    Google Scholar 

  4. H. Mimoun, New J. Chem. ,11:513 (1987);

    CAS  Google Scholar 

  5. E.H. Grigoryan, Russ. Chem. Rev. ,53:210 (1984);

    Google Scholar 

  6. E.H. Grigoryan, “Selective Hydrocarbon Activation” J.A. Davies, P.L. Watson, A. Greenberg, J.F. Liebman, eds. VCH Publisher, NY (1990).

    Google Scholar 

  7. E.S. Rudakov. “Reactions of Alkanes with Oxidants, Metallocomplexes and Radicals in Solutions,” Naukova Dumka, Kiev (1985) (in Russian);

    Google Scholar 

  8. E.S. Rudakov. “Studies in Surface Sciences and Catalysis, ” vol. 66, L.I. Simandi, ed., Elsevier, Amsterdam (1991);

    Google Scholar 

  9. D.T. Sawyer. “Oxygen Chemistry, ” Oxford University Press, NY (1991).

    Google Scholar 

  10. E.S. Rudakov. “Molecular Mechanism of Oxygen Activation,” O. Hayashi, ed., Academic Press,NY (1974);

    Google Scholar 

  11. E.S. Rudakov. “Biological Oxidation System”, C. Reddy, G.A. Hamilton, K.M. Madyastha, eds., Academic Press, NY (1990).

    Google Scholar 

  12. K. Lerch. Chapter 5, in “Metal Ions in Biological Systems, ” vol. 13, H. Sigel, ed.,p. 143, Marcel Dekker, NY (1981).

    Google Scholar 

  13. .“Cytochrome P-450: Structure, Mechanism and Biochemistry,” P. Ortiz de Montellano, ed., Plenum Press, NY (1981);

    Google Scholar 

  14. P.W. White, Bioorg. Chem. ,440 (1990);

    Google Scholar 

  15. T.C. Bruice, Acc. Chem. Res., 24:243 (1991).

    CAS  Google Scholar 

  16. See, the last comprehensive review, B. Meunier, Chem. Rev. ,92:1411 (1992).

    CAS  Google Scholar 

  17. J. Colby, D.I. Stirling, and H. Dalton, Biochem. J. , 165:395 (1977);

    PubMed  CAS  Google Scholar 

  18. J. Green, and H. Dalton, J. Biol. Chem. , 264:17698 (1989);

    PubMed  CAS  Google Scholar 

  19. A. Ericson, B. Hedman, K.O. Hodgson, J. Green, H. Dalton, J.G. Bensten, R.H. Beer, and S.J. Lippard, J. Am. Chem. Soc. ,110:2330 (1988);

    CAS  Google Scholar 

  20. B.G.Fox, W.A.Froland, J.Dege, and J.D.Lipscomb, J. Biol. Chem.. ,264:10023 (1989)

    PubMed  CAS  Google Scholar 

  21. W. May, and B. Abbot, J. Biol. Chem.. ,248:1725 (1973);

    PubMed  CAS  Google Scholar 

  22. A.G. Katopodis, K. Wimalasena, J. Lee, and S.W. May, J. Am. Chem. Soc. 106:7928 (1984).

    CAS  Google Scholar 

  23. S.M. Hecht, Acc. Chem. Res. ,19:383 (1986);

    CAS  Google Scholar 

  24. J. Stubbe, and J.W. Kozarich,Chem. Rev. 87:1107 (1987).

    CAS  Google Scholar 

  25. O. Pember, J.J. Villafranca, and S.J. Benkovic, Biochemistry ,25:661 (1986);

    Google Scholar 

  26. G. Guroff, M. Levitt, J. Daly, and S. Udenfriend, Biochem. Biophys. Res. Commun. ,25:253 (1966).

    PubMed  CAS  Google Scholar 

  27. Th.A. Dix, and S.J. Benkovic, Acc. Chem. Res. ,21:101 (1988).

    CAS  Google Scholar 

  28. I. Tabushi, T. Nakajima, and K. Seto, Tetrahedron Lett. ,21:2565 (1980)

    CAS  Google Scholar 

  29. N. Kitajima, H. Fukui, and Y. Mora-oka, J. Chem. Soc., Chem. Commun.,485 (1988);

    Google Scholar 

  30. J.B. Vincent, J.C. Huffman, G. Christou, Q. Li, M.A. Nanny, D.N. Hendricson, R.H. Fong, and R.H. Fish, J. Am. Chem. Soc. ,110:6898 (1988)

    CAS  Google Scholar 

  31. R.H. Fish, M.S. Konings, K.J. Oberhausen, R.H. Fong, W.M. Yu, C. Christou, J.B. Vincent, DeA.K. Coggin, and R.M. Buchanan, Inorg. Chem. , 30:3002 (1991)

    CAS  Google Scholar 

  32. H. Sugimoto, and D.T. Sawyer, J. Org. Chem. ,50:1784 (1985)

    CAS  Google Scholar 

  33. H. Sugimoto, L. Spencer, and D.T. Sawyer, Proc. Natl. Acad. Sci. U.S.A. , 84:1731 (1987)

    PubMed  CAS  Google Scholar 

  34. J.T. Groves, and M. Van Der Puy, J. Am. Chem. Soc., 96:5274 (1974)

    CAS  Google Scholar 

  35. A.M. Khenkin, and A.E. Shilov, New J. Chem. ,13:659 (1989)

    CAS  Google Scholar 

  36. R.A. Leising, R.E. Norman, and L. Que, Jr., Inorg. Chem. ,29:2553 (1990)

    CAS  Google Scholar 

  37. B.A. Brennan, Q. Chen, C. Juarez-Garsia, A.E. True, C.J. O’Connor, and L. Que, Jr., Inorg. Chem. ,30:1937 (1991)

    CAS  Google Scholar 

  38. T. Funabiki, K. Kashiba, T. Toyoda, and S. Yoshida, Chem. Lett. , 2303 (1992)

    Google Scholar 

  39. Sh.-I. Murahashi, Y. Oda, T. Naota, and N. Komiya, J. Chem. Soc., Chem. Commun., 139 (1993).

    Google Scholar 

  40. S. Udenfriend, C.T. Clark, J. Axelrod, and B.B. Brodie, J. Biol. Chem.,. 208:731 (1954)

    PubMed  CAS  Google Scholar 

  41. H. Mimoun, I. Seree de Roch, Tetrahedron, 31:777 (1975)

    CAS  Google Scholar 

  42. C. Sheu, A. Sobkowiak, S. Jeon, and D.T. Sawyer, J. Am. Chem. Soc. , 112:879 (1990).

    CAS  Google Scholar 

  43. Yu.V. Geletii, E.I. Karasevich, A.P. Moravsky, and A.A. Shteinman, Kinetika i kataliz ,22:349 (1981).

    CAS  Google Scholar 

  44. C. Walling, Acc. Chem. Res. ,8:125 (1975).

    CAS  Google Scholar 

  45. S. Ito, K. Ueno, A. Miterai, and K. Sasaki, J. Chem. Soc., Perkin Trans. 2 ,255 (1993).

    Google Scholar 

  46. J. Fossey, D. Lefort, M. Massoudi, J.-Y. Nedelec, and J. Sorba, Can. J. Chem. ,63:678 (1985).

    CAS  Google Scholar 

  47. D.H.R. Barton, M.J. Gastiger, and W.B. Motherwell, J. Chem. Soc., Chem. Commun. 41 (1983)

    Google Scholar 

  48. D.H.R. Barton, M.J. Gastiger, and W.B. Motherwell, J. Chem. Soc., Chem. Commun. ,731 (1983).

    Google Scholar 

  49. Yu.V. Geletii, G.V. Lubimova, and A.E. Shilov, Kinetika i Kataliz , 26:1023 (1985)

    Google Scholar 

  50. Yu.V. Geletii, V.V. Lavrushko, and A.E. Shilov, Dokl. Acad. Nauk SSSR ,288:139 (1986).

    Google Scholar 

  51. G. Balavoine, D.H.R. Barton, J. Boivin, A. Gref, N. Ozbalik, and H. Rivière, Tetrahedron Lett. ,27:2849 (1986).

    CAS  Google Scholar 

  52. Yu.V. Geletii, V.V. Lavrushko, and G.V. Lubimova, J. Chem. Soc., Chem. Commun. ,936 (1988)

    Google Scholar 

  53. D.H.R. Barton, F. Halley, N. Ozbalik, E. Young, G. Balavoine, A. Gref, and J. Boivin, New J. Chem. ,13:177 (1989).

    CAS  Google Scholar 

  54. D.H.R. Barton, E. Csuhai, D. Doller, and Yu.V. Geletii, Tetrahedron, 33:47 (1991).

    Google Scholar 

  55. D.H.R. Barton, E. Csuhai, and N. Ozbalik, Tetrahedron Lett. ,31:2817 (1990)

    CAS  Google Scholar 

  56. E. About-Jaudet, D.H.R. Barton, E. Csuhai, and N. Ozbalik, Tetrahedron Lett. ,31:1657 (1990)

    CAS  Google Scholar 

  57. C. Sheu, S.A. Richert, P. Cofré, B. Ross, Jr., A. Sobkowiak, D.T. Sawyer, and J.R. Kanofsky, J. Am. Chem. Soc. ,112:1936 (1990).

    CAS  Google Scholar 

  58. D.H.R. Barton, S.D. Bévière, W. Chavasiri, D. Doller, and B. Hu, Tetrahedron Lett. ,33:5476 (1992)

    Google Scholar 

  59. D.H.R. Barton, S.D. Bévière, W. Chavasiri, D. Doller, and B. Hu, Tetrahedron Lett. ,34:567 (1993)

    CAS  Google Scholar 

  60. A. Sobkowiak, A. Qui, X. Liu, A. Llobet, and D.T. Sawyer, J. Am. Chem. Soc. ,115:609 (1993).

    CAS  Google Scholar 

  61. H.-C. Tung, and D.T. Sawyer, J. Am. Chem. Soc. ,112:8214 (1990)

    CAS  Google Scholar 

  62. D.H.R. Barton, D. Doller, and Yu.V. Geletii, Mendeleev Commun. ,115 (1991)

    Google Scholar 

  63. H.-C. Tung, C. Kang, and D.T. Sawyer, J. Am. Chem. Soc. ,114:3445 (1992).

    CAS  Google Scholar 

  64. G. Balavoine, D.H.R. Barton, J. Boivin, A. Gref, P. Le Coupanec, N. Ozbalik, J.A.X. Pestana, and H. Rivière, Tetrahedron ,44:1091 (1988).

    CAS  Google Scholar 

  65. H.-C. Tung, C. Kang, and D.T. Sawyer, J. Am. Chem. Soc. ,114:3445 (1992)

    CAS  Google Scholar 

  66. U. Schuchardt, C.E.Z. Krähembül, and W.A. Carvalho, New J. Chem. ,15:955 (1991)

    CAS  Google Scholar 

  67. U. Schuchardt, W.A. Carvalho, P. Pereira, and E.V. Spinacé, this book.

    Google Scholar 

  68. D.H.R. Barton, J. Boivin, M.J. Gastiger, J. Morzycki, R.S. Hay-Motherwell, W.B. Motherwell, N. Ozbalik, and K.M. Schwartzentruber, J. Chem. Soc., Perkin Trans. 1 ,947 (1986).

    Google Scholar 

  69. D.H.R. Barton, J. Boivin, W.B. Motherwell, N. Ozbalik, K.M. Schwartzentruber, and K. Jankowski, Nouv. J. Chem. ,10:386 (1986).

    Google Scholar 

  70. F. Minisci, E. Vismara, and F. Fontana, Heterocycles ,28:489 (1988).

    Google Scholar 

  71. D.H.R. Barton, F. Halley, N. Ozbalik, M. Schmitt, E. Young, and G. Balavoine, J. Am. Chem. Soc. ,111:7144 (1989).

    CAS  Google Scholar 

  72. D.H.R. Barton, D. Doller, N. Ozbalik, G. Balavoine, A. Gref, and J. Boivin, Tetrahedron Lett., 31:353. (1990)

    CAS  Google Scholar 

  73. D.H.R. Barton, F. Halley, N. Ozbalik, and W. Mehl, Tetrahedron Lett. ,30:6615 (1989)

    CAS  Google Scholar 

  74. E. Baciocchi, E. Muraglia, and G. Sleiter, Tetrahedron Lett. ,32:2647 (1991).

    CAS  Google Scholar 

  75. D.H.R. Barton, K. W.Lee, W. Mehl, N. Ozbalik, and L. Zhang, Tetrahedron ,46:3753 (1990)

    CAS  Google Scholar 

  76. D.H.R. Barton, E. Csuhai, and N. Ozbalik, Tetrahedron ,46:3743 (1990).

    CAS  Google Scholar 

  77. D.H.R. Barton, S.D. Bévière, W. Chavasiri, E. Csuhai, D. Doller, and W.-G. Liu, J. Am. Chem. Soc. ,14:2147 (1992).

    Google Scholar 

  78. G. Balavoine, D.H.R. Barton, J. Boivin, P. Lecoupanec, and P. Lelandais, New J. Chem. ,13:691 (1989).

    CAS  Google Scholar 

  79. D.H.R. Barton, E. Csuhai, and D. Doller, Tetrahedron 48:9195 (1992).

    CAS  Google Scholar 

  80. D.H.R. Barton, E. Csuhai, and N. Ozbalik, Tetrahedron Lett. ,31:2817 (1990).

    CAS  Google Scholar 

  81. D.H.R. Barton, and D. Doller, Acc. Chem. Res. 25:504 (1992)

    CAS  Google Scholar 

  82. D.H.R. Barton, and D. Doller, in “Dioxygen Activation and Homogeneous Catalytic Oxidation”, L.I. Simándi, ed., Elsevier, Amsterdam (1991).

    Google Scholar 

  83. D.H.R. Barton, S.D. Bévière, W. Chavasiri, E. Csuhai, and D. Doller, Tetrahedron 48:2895.(1992).

    CAS  Google Scholar 

  84. C. Knight, and M.J. Perkins, J. Chem. Soc., Chem. Commun. 925 (1991).

    Google Scholar 

  85. D.H.R. Barton, Aldrichimica Acta 23:3 (1990).

    Google Scholar 

  86. Tabushi, J. Hamuro, and R. Oda, J. Am. Chem. Soc. 89:7127 (1967).

    CAS  Google Scholar 

  87. J. Boivin, E. Crepon, and S. Zard, Tetrahedron Lett. ,31:6869 (1990)

    CAS  Google Scholar 

  88. D.H.R. Barton, J.Cs. Jaszberenyi, and A.I. Morrel, Tetrahedron Lett. ,32:311 (1991).

    CAS  Google Scholar 

  89. D.H.R. Barton, and Yu.V. Geletii, unpublished data.

    Google Scholar 

  90. M. Newcomb, and M.B. Manek, J. Am. Chem. Soc. ,112:9662 (1990).

    CAS  Google Scholar 

  91. D.H.R. Barton, S.D. Bévière, and D. Doller, Tetrahedron Lett. ,32:4671.(1991).

    CAS  Google Scholar 

  92. J.A. Franz, B.A. Bushaw, and M.S. Alnajjar, J. Am. Chem. Soc. ,111:268 (1989).

    CAS  Google Scholar 

  93. D.M. Tomkinson, and H.O. Pritchard, J. Phys. Chem. ,70:1579 (1966).

    CAS  Google Scholar 

  94. D.H.R. Barton, R.S. Hay-Motherwell, and W.B. Motherwell, Tetrahedron Lett. ,24:1979 (1983)

    CAS  Google Scholar 

  95. Yu.V. Geletii, and A.E. Shilov, in “Studies in Organic Chemistry”, vol.33, p.293, W. Ando, and Y. Moro-oka, eds., Elsevier, Amsterdam (1988)

    Google Scholar 

  96. D.H.R. Barton, S.D. Bévière, W. Chavasiri, D. Doller, W.-G. Liu, and J.H. Reibenspies, New J. Chem. ,16:1019 (1992).

    CAS  Google Scholar 

  97. L. Melander, and W.H. Saunder, Jr., “Reaction Rates of Isotopic Molecules,” Wiley, NY (1979).

    Google Scholar 

  98. E.S. Rudakov, Dokl. Phys. Chem. (Engl.Trans.) ,263:262 (1982).

    Google Scholar 

  99. D.H.R. Barton, D. Doller, and Yu.V. Geletii, Tetrahedron Lett. ,32:3811 (1991).

    CAS  Google Scholar 

  100. E.S. Rudakov, L.K. Volkova, V.P. Tret’yakov, and V.V. Zamashchikov, Kinetics and Catalysis (Eng.Trans.) ,23:18 (1982)

    Google Scholar 

  101. E.S. Rudakov, N.A. Tishchenko, and L.K. Volkova, Kinetics and Catalysis (Eng.Trans.) ,27:949 (1986)

    Google Scholar 

  102. E.S. Rudakov, V.V. Zamashchikov, A.I. Lutsyk, and A.P. Yaroshenko, Dokl. Phys. Chem.. (Eng.Trans.) ,224:916 (1975).

    Google Scholar 

  103. C. Sheu, A. Sobkowiak, L. Zhang, N. Ozbalik, D.H.R. Barton, and D.T. Sawyer, J. Am. Chem. Soc., 111:8030 (1989).

    CAS  Google Scholar 

  104. A.F. Trotman-Dickenson, Adv. Free Radical Chem. ,1:1 (1965).

    CAS  Google Scholar 

  105. D.H.R. Barton, S.D. Bévière, W. Chavasiri, E. Csuhai, and D. Doller, Tetrahedron , 48:2895 (1992).

    CAS  Google Scholar 

  106. C. Walling, and B.B. Jacknow, J. Am. Chem. Soc. ,82:6113 (1960).

    CAS  Google Scholar 

  107. RS. Skell, and K.J. Shea, in “Free Radicals”, vol.2, p. 809, K.J. Kochi, ed., Wiley, NY (1973).

    Google Scholar 

  108. D.H.R. Barton, Ph.E. Eaton, and W.-G. Liu, Tetrahedron Lett. ,32:6263 (1991).

    CAS  Google Scholar 

  109. C. Larpent, H. Patin, J. Mol. Catal. 72:315 (1992).

    CAS  Google Scholar 

  110. D.H.R. Barton, E. Csuhai, D. Doller, N. Ozbalik, and G. Balavoine, Proc. Natl. Acad. Sci.U.S.A.. ,87:3401 (1990).

    PubMed  CAS  Google Scholar 

  111. G. Balavoin, D H.R. Barton, A. Gref, and I. Lellouche, Tetrahedron Lett. ,32:2351 (1991).

    Google Scholar 

  112. J.E. Baldwin, in “Recent Advances in the Chemistry of ß-Lactam Antibiotics” Royal Soc.Chem. Special Pub., p. 62, A. Brown, ed., S.M. Roberts, London (1985).

    Google Scholar 

  113. F. Frappier, G. Guilerm, A.G. Salib, and A. Marquet, Biochem. Biophys. Res. Commun. 91:521 (1979)

    PubMed  CAS  Google Scholar 

  114. F. Frappier, and A. Marquet, ibid. ,103:1288 (1981).

    CAS  Google Scholar 

  115. D.H.R. Barton and D. Doller, Acc. Chem. Res. 25:504 (1992).

    CAS  Google Scholar 

  116. E.M. Koldasheva, Yu.V. Geletii, V.V. Yanilkin, and V.V. Strelets, Izv. Akad. Nauk ,SSSR, Ser. Khim. 994 (1990)

    Google Scholar 

  117. E.M. Koldasheva, A.F. Shestakov, Yu.V. Geletii, and A.E. Shilov, Izv. Akad. Naukk SSSR Ser. Khim. 845 (1992)

    Google Scholar 

  118. Yu.V. Geletii,V.V. Strelets, V.Ya. Shafirovich, and A.E. Shilov, Heterocycles ,28:677 (1989)

    CAS  Google Scholar 

  119. E.M. Koldasheva, Yu.V. Geletii, V.V. Strelets, and A.E. Shilov, in. “Studies in Surface Science and Catalysis,” vol. 66, L.I. Simandi, ed., Elsevier, Amsterdam (1991)

    Google Scholar 

  120. E.M. Koldasheva, Yu.V. Geletii, A.F. Shestakov, A.I. Kulikov, and A.E. Shilov, New J. Chem. ,(1993) (in press).

    Google Scholar 

  121. Yu.V. Geletii, V.A. Kuzmin, P.P. Levin, and V.Ya. Shafirovich, React. Kinet. Catal. Lett. ,37:307 (1988)

    CAS  Google Scholar 

  122. Yu.V. Geletii, V.E. Zubarev, P.P. Levin, G.V. Lubimova, and V.Ya. Shafirovich, Kinetika i Kataliz 31:802 (1990).

    CAS  Google Scholar 

  123. A.E. Shilov, React. Kinet. Catal. Lett. 41:223 (1990)

    CAS  Google Scholar 

  124. A.E. Shilov, Khim. Fizika ,10:758 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balavoine, G., Barton, D.H.R., Geletii, Y.V., Hill, D.R. (1993). Studies on the Mechanism of Gif Reactions. In: Barton, D.H.R., Martell, A.E., Sawyer, D.T. (eds) The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3000-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3000-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6307-1

  • Online ISBN: 978-1-4615-3000-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics