Skip to main content

Dynamic Mechanisms of Disorderly Growth

Dedicated to the people of Puerto Rico and their music

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 8))

  • 268 Accesses

Abstract

The purpose of this talk is to present a brief overview of our group’s recent research into dynamic mechanisms of disorderly growth, an exciting new branch of condensed matter physics in which the methods and concepts of modern statistical mechanics are proving to be useful. Our strategy has been to focus on attempting to understand a single model system—diffusion limited aggregation (DLA). This philosophy was the guiding principle for years of research in phase transitions and critical phenomena. For example, by focusing on the Ising model, slow progress was made; this progress eventually led to understanding a wide range of critical point phenomena, since even systems for which the Ising model was not appropriate turned out to be described by variants of the Ising model (such as the XY and Heisenberg models). So also, we are optimistic that whatever we may learn in trying to “understand” DLA will lead to generic information helpful in understanding general aspects of dynamic mechanisms underlying disorderly growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. A. Witten and L. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  2. P. Meakin, in Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz (Academic, Orlando, 1988), Vol. 12

    Google Scholar 

  3. J. Feder, Fractals (Pergamon, New York, 1988).

    MATH  Google Scholar 

  4. H. E. Stanley and N. Ostrowsky, eds. Random Fluctuations and Pattern Growth: Experiments and Models (Kluwer Academic Publishers, Dordrecht, 1988).

    Book  Google Scholar 

  5. T. Vicsek, Fractal Growth Phenomena (World, Singapore, 1989).

    Book  MATH  Google Scholar 

  6. H. E. Stanley and N. Ostrowsky, eds. Correlations and Connectivity: Geometric Aspects of Physics, Chemistry and Biology [Proceedings 1990 Cargèse NATO ASI, Series E: Applied Sciences, Vol. 188] (Kluwer, Dordrecht 1990)

    Google Scholar 

  7. H. E. Stanley and N. Ostrowsky Fractals and Disordered Systems, eds. A. Bunde and S. Havlin (Springer, Heidelberg 1991).

    Google Scholar 

  8. H. Fujikawa and M. Matsushita, J. Phys. Soc. Japan 58, 3875 (1989).

    Article  ADS  Google Scholar 

  9. F. Family, B. R. Masters, and D. E. Platt, Physica D 38, 98 (1989).

    Article  ADS  Google Scholar 

  10. F. Caserta, H. E. Stanley, W. Eldred, G. Daccord, R. Hausman, and J. Nittmann, Phys. Rev. Lett. 64. 95 (1990).

    Article  ADS  Google Scholar 

  11. see also the brief report H. E. Stanley, F. Caserta, W. Eldred, G. Daccord, R. Hausman, and J. Nittmann, Bull. Am. Phys. Soc. 34, 716 (1989).

    Google Scholar 

  12. For photographs of natural systems described by DLA, see Plates 9-12, 15, 20-24, 41-45 and 50 of E. Guyon and H. E. Stanley: Les Formes Fractales (Palais de la Découverte, Paris, 1991) [English Translation: Fractal Forms (Elsevier, Amsterdam 1991)].

    Google Scholar 

  13. See also Plates 3, 7, 8 and 11 of D. Stauffer and H. E. Stanley, From Newton to Mandelbrot: A Primer in Modern Theoretical Physics (Springer Verlag, Heidelberg, 199

    Book  Google Scholar 

  14. For a color-coded map of the p i for large DLA clusters in both circular and strip geometry, see B. B. Mandelbrot and C. J. G. Evertsz, Nature 348, 143 (1990).

    Article  ADS  Google Scholar 

  15. See, e.g., L. A. Turkevich and H. Scher, Phys. Rev. Lett. 55, 1026 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Coniglio, in On Growth and Form: Fractal and Non-Fractal Patterns in Physics, eds H. E. Stanley and N. Ostrowsky (Nijhoff, Dordrecht, 1985), p. 101.

    Google Scholar 

  17. G. Parisi and Y. C. Zhang, J. Stat. Phys. 41, 1 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  18. Y. Hayakawa, S. Sato and M. Matsushita, Phys. Rev. A 36, 1963 (1987)

    Article  ADS  Google Scholar 

  19. T. C. Halsey, Phys. Rev. Lett. 59, 2067 (1987)

    Article  ADS  Google Scholar 

  20. L. Pietronero, A. Erzan, and C. J. G. Evertsz Phys. Rev. Lett. 61, 861 (1988).

    Article  ADS  Google Scholar 

  21. P. Meakin, H. E. Stanley, A. Coniglio and T. A. Witten, Phys. Rev. A 32, 2364 (1985).

    Article  ADS  Google Scholar 

  22. T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986).

    Article  ADS  Google Scholar 

  23. C. Amitrano, A. Coniglio and F. di Liberto, Phys. Rev. Lett. 57, 1016 (1986).

    Article  ADS  Google Scholar 

  24. P. Meakin, A. Coniglio, H. E. Stanley, and T. A. Witten, Phys. Rev. A 34, 3325 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Lee and H. E. Stanley, Phys. Rev. Lett. 61, 2945 (1988).

    Article  ADS  Google Scholar 

  26. J. Lee, P. Alstrøm, and H. E. Stanley, Phys. Rev. A 39, 6545 (1989)

    ADS  Google Scholar 

  27. B. Fourcade and A. M. S. Tremblay, Phys. Rev. Lett. 64, 1842 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62, 2977 (1989).

    Article  ADS  Google Scholar 

  29. P. Trunfio and P. Alstrøm, Phys. Rev. B 41, 896 (1990).

    ADS  Google Scholar 

  30. B. Mandelbrot and C. J. G. Evertsz, Physica A 177, 386 (1991).

    MathSciNet  ADS  Google Scholar 

  31. C. J. G. Evertsz, P. W. Jones and B. B. Mandelbrot, J. Phys. A 24, 1889 (1991).

    MathSciNet  ADS  Google Scholar 

  32. B. B. Mandelbrot, Physica A 168, 95 (1990).

    MathSciNet  ADS  Google Scholar 

  33. B. B. Mandelbrot, C. J. G. Evertsz and Y. Hayakawa, Phys. Rev. A 42, 4528 (1990).

    ADS  Google Scholar 

  34. C. J. G. Evertsz and B. B. Mandelbrot, Physica A 185, 77 (1992).

    MathSciNet  ADS  Google Scholar 

  35. C. J. G. Evertsz and B. B. Mandelbrot, J. Phys. A 25, 1981 (1992).

    MathSciNet  ADS  Google Scholar 

  36. C. J. G. Evertsz, B. B. Mandelbrot and L. Woog, Phys. Rev. A 45, 5798 (1992).

    ADS  Google Scholar 

  37. A. B. Harris and M. Cohen, Phys. Rev. A 41, 971 (1990).

    ADS  Google Scholar 

  38. A. L. Barabási and T. Vicsek, J. Phys. A 23, L729 (1990).

    ADS  Google Scholar 

  39. R. Ball and R. Blumenfeld, Phys. Rev. A 44, 828 (1991).

    ADS  Google Scholar 

  40. (a)S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H. E. Roman, and H. E. Stanley, Phys. Rev. Lett. 65, 603 (1990).

    Article  ADS  Google Scholar 

  41. S. Schwarzer, J. Lee, S. Havlin, H. E. Stanley, P. Meakin, Phys. Rev. A 43, 1134 (1991).

    ADS  Google Scholar 

  42. See also the recent work of M. Wolf Phys. Rev. A 43, 5504 (1991).

    ADS  Google Scholar 

  43. M. Wolf Phys. Rev. A 46, xxx (1992) which confirms many features of our 2D results.

    Google Scholar 

  44. J. Lee, S. Havlin, H. E. Stanley and J. E. Kiefer, Phys. Rev. A 42, 4832 (1990)

    ADS  Google Scholar 

  45. J. Lee, S. Havlin and H. E. Stanley, Phys. Rev. A 45, 1035 (1992).

    ADS  Google Scholar 

  46. A. Coniglio and M. Zannetti Physica A 163, 325 (1990).

    Article  ADS  Google Scholar 

  47. C. Amitrano, A. Coniglio, P. Meakin and M. Zannetti, Phys. Rev. B 44, 4974 (1991).

    Article  ADS  Google Scholar 

  48. for a discussion of multifractality and multiscaling in terms of the localization of growth sites in DLA clusters, see J. Lee, A. Coniglio, S. Schwarzer and H. E. Stanley, “Localization of Growth Sites in DLA Clusters: Multifractality and Multiscaling” Nature (submitted).

    Google Scholar 

  49. S. Schwarzer, S. Havlin, and H. E. Stanley, “Scaling Properties of the Perimeter of Diffusion Limited Aggregation,” Phys. Rev. A (submitted).

    Google Scholar 

  50. S. Schwarzer, M. Wolf, S. Havlin, P. Meakin and H. E. Stanley, Phys. Rev. A 46 R–3016 (1992).

    Article  Google Scholar 

  51. S. Schwarzer, S. Havlin and H. E. Stanley, “Multifractal scaling of 3D diffusion-limited aggregation” in International Conference on Fractals and Disordered Systems (Hamburg, Germany, 1992); Physica A191, xxx (199

    Article  Google Scholar 

  52. C. Amitrano, P. Meakin and H. E. Stanley, Phys. Rev. A 40, 1713 (1989).

    Article  ADS  Google Scholar 

  53. H. E. Stanley, A. Bunde, S. Havlin, J. Lee, E. Roman, and S. Schwarzer, Physica A 168, 23 (1990)

    Article  ADS  Google Scholar 

  54. S. Havlin, A. Bunde, E. Eisenberg, J. Lee, H. E. Roman, S. Schwarzer and H. E. Stanley, “Multifractal Fluctuations in the Dynamics of Disordered Systems,” in Proc. STATPHYS-18, Berlin, August 1992; Physica A (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stanley, H.E., Havlin, S., Lee, J., Schwarzer, S. (1993). Dynamic Mechanisms of Disorderly Growth. In: Blum, L., Malik, F.B. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2934-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2934-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6274-6

  • Online ISBN: 978-1-4615-2934-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics