Skip to main content

Fast Bounded-Distance Decoding of the Nordstrom-Robinson Code

  • Chapter
Communications and Cryptography

Abstract

Based on the two-level squaring construction of the Reed-Muller code, a bounded-distance decoding algorithm for the Nordstrom-Robinson code is given. This algorithm involves 199 real operations, which is less than one half of the computational complexity of the known maximum-likelihood decoding algorithms for this code. The algorithm also has exactly the same effective error coefficient as the maximum-likelihood decoding, so that its performance is only degraded by a negligible amount.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Adoul, “Fast ML decoding algorithm for the Nordstrom-Robinson code,”IEEE Trans. on Inform. Theoryvol. 33, pp. 931–933, 1987.

    Article  MATH  Google Scholar 

  2. Amrani, Y. Be’ery, A. Vardy, F. W. Sun, and H. C. A. van Tilborg, “The Leech lattice and the Golay code: bounded-distance decoding and multilevel constructions,”accepted by IEEE Trans. on Inform. Theory.

    Google Scholar 

  3. E. L. Blokh and V. V. Zyablov,“Coding of generalized concatenated codes,”Prob. Peredach. Inform.vol. 10, no. 3, pp. 218–222, 1974.

    Google Scholar 

  4. A. R. Calderbank, “Multilevel trellis codes and multistage decoding,”IEEE Trans. Commun.vol. 37, pp. 222–229, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. H. Conway and N. J. A. Sloane, “ Fast quantizing and decoding algorithms for lattice quantizers and codes,”IEEE Trans. on Inform. Theoryvol. 28, pp. 227–232, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. H. Conway and N. J. A. Sloane, “Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice,”IEEE Trans. on Inform. Theoryvol. 32, pp. 41–50, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. D. Forney Jr. “Coset codes-Part II: Binary lattices and related codes,”IEEE Trans. on Inform. Theoryvol. 34, pp. 1152–1187, 1988.

    Article  MathSciNet  Google Scholar 

  8. G. D. Forney Jr. “A bounded-distance decoding algorithm for the Leech lattice, with generalizations,”IEEE Trans. on Inform. Theoryvol. 35, pp. 906–909, July 1989.

    Article  MathSciNet  Google Scholar 

  9. G. D. Forney Jr., “Geometrically uniform codes,”IEEE Trans. on Inform. Theoryvol. 37, pp. 1241–1260, Sept. 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. D. Forney Jr., N. J. A. Sloane, and M. D. Trott, “The Nordstrom-Robinson code is the binary image of the octacode,”Proceedings 1992 DIMACS/IEEE Workshop on Coding and Quantization1993.

    Google Scholar 

  11. A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solü, “The Z4-Linearity of Kerdock, Preparata, Goethals and related codes,” to appear inIEEE Trans. on Inform. Theory.

    Google Scholar 

  12. J. Honga and M. Vetterli, “Computing m DFT’s overGF(q)with one DFT overGF(qm) ” IEEE Trans. on Inform. Theoryvol. 39, pp. 271–274, 1993.

    Article  Google Scholar 

  13. H. Imai and S. Hirakawa, “Multilevel coding method using error-correcting codes,”IEEE Trans. on Inform. Theoryvol. IT-23, pp. 371–377, 1977.

    Article  MATH  Google Scholar 

  14. F. J. MacWilliams and N. J. A. SloaneThe theory of error-correcting codesAmsterdam: North-Holland, 1977.

    MATH  Google Scholar 

  15. R. A. Silverman and M. Balser, “Coding for a constant data rate source,”IRE Trans. Inform. Theoryvol. PGIT-4, pp. 50–63, 1954.

    MathSciNet  Google Scholar 

  16. J. Snyders and Yair Be’ery, “Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes,”IEEE Trans. on Inform. Theoryvol. 35, pp. 963–975, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Wu and D. J. Costello Jr. “New multilevel codes over GF(q),”IEEE Trans. on Inform. Theoryvol.38, pp. 933–935, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. A. Zinov’ev, “Generalized cascade codes,”Prob. Peredach. Inform.vol. 12, No. 1, pp. 2–9, 1976.

    MathSciNet  Google Scholar 

  19. V. A. Zinov’ev and V. V. Zyablov, “Decoding of nonlinear generalized cascade codes,”Prob. Peredach. Inform.vol.14, No.2, pp. 110–114, 1978.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, FW., van Tilborg, H.C.A. (1994). Fast Bounded-Distance Decoding of the Nordstrom-Robinson Code. In: Blahut, R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol 276. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2694-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2694-0_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6159-6

  • Online ISBN: 978-1-4615-2694-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics