Skip to main content

On the importance of protein phosphorylation in cell cycle control

  • Chapter
Reversible Protein Phosphorylation in Cell Regulation

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 11))

  • 86 Accesses

Abstract

This chapter is written as a contribution to a volume commemorating the work of Krebs and Fischer that led to award ing of the Nobel Prize in 1992. This award was made because of their fundamental discovery in the mid-1950s that protein phosphorylation was the underlying mechanism that accounted for the reversible modification of activity of glycogen phosphorylase in mammalian skeletal muscle. Although it could not be anticipated at the time that phosphorylation would turn out to be such a ubiquitous regulator of cellular functions, it is now evident that phosphorylation controls virtually every important reaction in cells and provides the basis for understanding how integrated cellular behavior is regulated by both extracellular signals and internal control mechanisms. This chapter relates the historical development in biochemical terms of protein phosphorylation as a regulator of the cell cycle in Xenopus oocytes and eggs. (Mol Cell Biochem 127/128: 267–281, 1993)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Masui Y, Markert CL: Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177: 129–146, 1971

    Article  PubMed  CAS  Google Scholar 

  2. Mailer JL: Studies on the mechanism of cytoplasmic control of meiotic maturation of Xenopus oocytes. Ph.D. thesis, University of California, Berkeley, 1974

    Google Scholar 

  3. Kishimoto T, Kuriyama R, Kondo H, Kanatani H: Generality of the action of various maturation-promoting factors. Exp Cell Res 137: 121–126, 1982

    Article  PubMed  CAS  Google Scholar 

  4. Kishimoto T, Yamazaki K, Kato Y. Koide SS. Kanatani H: In duction of starfish oocyte maturation by maturation-promoting factor of mouse and surf clam oocytes. J Exp Zool 231: 293–295, 1984

    Article  CAS  Google Scholar 

  5. Weintraub H, Buscaglia M, Ferrez M. Weiller S. Boulet A. Fabré R, Baulieu EE: Mise en évidence d’une activité ’MPF’ chez Saccharomyces cerevisae. C R Seances Acad Sci Paris Ser III 295: 787–790, 1982

    Google Scholar 

  6. Sunkara PS, Wright DA, Rao PN: Mitotic factors from mammalian cells induce germinal vesicle breakdown and chromosome condensation in amphibian oocytes. Proc Natl Acad Sci USA 76: 2799–2802, 1979

    Article  PubMed  CAS  Google Scholar 

  7. Mailer JL, Wu M, Gerhart JC: Changes in protein phosphorylation accompanying maturation of Xenopus laevis oocytes. Dev Biol 58: 295–312, 1977

    Article  Google Scholar 

  8. Dorée M, Peaucellier G, Picard A: Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes. Dev Biol 99: 489–501, 1983

    Article  PubMed  Google Scholar 

  9. Mailer JL, Krebs EG: Regulation of oocyte maturation. In: B Horecker, E Stadtman (eds) Current Topics in Cell Regulation. Academic Press, New York, 1980, pp 272–311

    Google Scholar 

  10. Drury KC, Schorderet-Slatkine S: Effects of cycloheximide on the ’autocatalytic1 nature of the maturation-promoting factor (MPF) in oocytes of Xenopus laevis. Cell 4: 268–274, 1975

    Article  Google Scholar 

  11. Wasserman WJ, Masui Y: Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus laevis oocytes. Exp Cell Res 91: 381–388, 1975b

    Article  PubMed  CAS  Google Scholar 

  12. Smith LD, Ecker RE: The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Dev Biol 25: 233– 247, 1971

    Google Scholar 

  13. Reynhout JK, Smith LD: Studies on the appearance and nature of a maturation-inducing factor in the cytoplasm of amphibian oocytes exposed to progesterone. Dev Biol 38: 394–400, 1974

    Article  PubMed  CAS  Google Scholar 

  14. Wang JH, Stull JT, Huang TS, Krebs EG: A study on the autoactivation of rabbit muscle phosphorylase kinase. J Biol Chem 251: 4521–4527, 1976

    PubMed  CAS  Google Scholar 

  15. Mulner O, Tso J, Huchon D, Ozon R: Calmodulin modulates the cyclic AMP levels in Xenopus oocytes. Cell Differ 12: 211–218, 1983

    Article  PubMed  CAS  Google Scholar 

  16. Wasserman WJ, Smith LD: Calmodulin triggers the resumption of meiosis in amphibian oocytes. J Cell Biol 89: 389–394, 1981

    Article  PubMed  CAS  Google Scholar 

  17. Wu M, Gerhart JC: Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis. Dev Biol 79: 465–477, 1980

    Article  PubMed  CAS  Google Scholar 

  18. Erikson E, Mailer JL: Biochemical characterization of the p34cdc2 protein kinase component of purified maturation-promoting factor from Xenopus eggs. J Biol Chem 264: 19577–19582, 1989

    PubMed  CAS  Google Scholar 

  19. E.G. Krebs, personal communication

    Google Scholar 

  20. Walsh DA, Perkins JP, Krebs EG: An adenosine 3’,5’-phosphate-dependent protein kinase from rabbit skeletal muscle. J Biol Chem 243: 3763–3765, 1968

    PubMed  CAS  Google Scholar 

  21. Mailer JL, Krebs EG: Progesterone-stimulated meiotic cell divi sion in Xenopus oocytes: Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3’,5’ monophosphate-dependent protein kinase. J Biol Chem 252: 1712–1718, 1977

    Google Scholar 

  22. Speaker MG, Butcher FR: Cyclic nucleotide fluctuations during steroid-induced meiotic maturation of frog oocytes. Nature 267: 848–859, 1977

    Article  PubMed  CAS  Google Scholar 

  23. Mailer JL, Butcher FR, Krebs EG: Early effect of progesterone on levels of cyclic adenosine 3’:5’ monophosphate in Xenopus oocytes. J Biol Chem 254: 579–582, 1979

    Google Scholar 

  24. Lohka MJ, Masui Y: Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220: 719–721, 1983

    Article  PubMed  CAS  Google Scholar 

  25. Lohka MJ, Mailer JL: Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101: 518–523, 1985

    Article  PubMed  CAS  Google Scholar 

  26. Miake-Lye R, Kirschner MW: Induction of early mitotic events in a cell-free system. Cell 41:165–175, 1985

    Article  PubMed  CAS  Google Scholar 

  27. Hutchison CJ, Cox R, Drepaul RS, Gomperts M, Ford CC: Periodic DNA synthesis in cell-free extracts of Xenopus eggs. EMBO J 6: 2003–2010, 1987

    PubMed  CAS  Google Scholar 

  28. Lohka MJ, Hayes M, Mailer JL: Purification of maturation-promoting-factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci USA 85: 3009–3013, 1988

    Article  PubMed  CAS  Google Scholar 

  29. Nurse P: Cell cycle control genes in yeast. Trends Genet 1: 51–55, 1985

    Article  CAS  Google Scholar 

  30. Simanis V. Nurse P: The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45: 261–268, 1986

    Article  PubMed  CAS  Google Scholar 

  31. Nurse P. Thuriaux P: Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96: 627–637, 1980

    PubMed  CAS  Google Scholar 

  32. Lee M. Nurse P: Cell cycle control genes in fission yeast and mammalian cells. Trends Genet 4: 287–290, 1988

    Article  PubMed  CAS  Google Scholar 

  33. Beach D. Durkacz B. Nurse P: Functionally homologous cell cycle control genes in fission yeast and budding yeast. Nature 300: 706–709, 1982

    Article  PubMed  CAS  Google Scholar 

  34. Draetta G. Brizuela L, Potashkin J, Beach D: Identification of p34 and pl3. human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and sucl+. Cell 50: 319–325, 1987

    Article  PubMed  CAS  Google Scholar 

  35. Gautier J. Norbury C, Lohka M. Nurse P, Mailer JL: Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc 2+. Cell 54: 433–439, 1988

    Article  PubMed  CAS  Google Scholar 

  36. Dunphy WG. Brizuela L. Beach D. Newport J: The Xenopus cdc2 protein is a component of MPF a cytoplasmic regulator of mitosis. Cell 54: 423–431. 1988

    Article  PubMed  CAS  Google Scholar 

  37. Labbé JC. Capony J-P Caput D. Cavadore JC, Derancourt J, Kaghad M. Lelias J-M. Picard A. Dorée M: MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J 8: 3053–3058.1989

    Google Scholar 

  38. Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Mailer JL: Cyclin is a component of MPF from Xenopus. Cell 60: 487–494, 1990

    Article  PubMed  CAS  Google Scholar 

  39. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T: Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 54: 433–439, 1983

    Google Scholar 

  40. Swenson KI, Farrell KM, Ruderman JV: The clam embryo protein cyclin A induces entry into M-phase and the resumption of meiosis in Xenopus oocytes. Cell 47: 861–870, 1986

    Article  PubMed  CAS  Google Scholar 

  41. Nigg EA: The substrates of the cdc2 kinase. Sem Cell Biol 2: 261–270,1990

    Google Scholar 

  42. Shenoy S, Shoi J-P, Bagrodia S, Copeland TD, Mailer JL, Shalloway D: Purified maturation-promoting factor phosphorylates pp60csrc at the sites phosphorylated during fibroblast mitosis. Cell 57: 763–774, 1989

    Article  PubMed  CAS  Google Scholar 

  43. Kipreos ET, Wang JYJ: Differential phosphorylation of c-abl in cell cycle determined by cdc2 kinase and phosphatase activity. Science 248: 217–220, 1990

    Article  PubMed  CAS  Google Scholar 

  44. Yamashiro S, Yamakita Y, Hosoya J, Matsumura F: Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature 349: 169–172, 1991

    Article  PubMed  CAS  Google Scholar 

  45. Satterwhite L, Minshull J, Hunt T, Cisek L, Corden J, Pollard T: Phosphorylation of myosin regulatory light chain by cyclin-p34 kinase provides a mechanism for the timing of cytokinesis. J Cell Biol 111: 135a, 1990

    Google Scholar 

  46. Langan TA, Gautier J, Lohka M, Hollingsworth R, Moreno PN, Nurse PN, Mailer JL, Sclafani R: Mammalian growth-associated HI histone kinase: a homolog of cdc27CDC28 protein kinase controlling mitotic entry in yeast and frog cells. Mol Cell Biol 9: 3860–3868, 1989

    PubMed  CAS  Google Scholar 

  47. Lin BTY, Gruewald S, Morla AO, Lee WH, Wang JYJ: Retino-blastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 10: 857–864, 1991

    PubMed  CAS  Google Scholar 

  48. Kemp BE, Pearson RB: Protein kinase recognition sequence motifs. Trends Biochem Sci 1: 342–346, 1990

    Article  Google Scholar 

  49. Murray AW: Creative blocks: cell cycle checkpoints and feedback controls. Nature 39: 599–604, 1992

    Article  Google Scholar 

  50. Russell P, Nurse P: Cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45: 145–153, 1986

    Article  PubMed  CAS  Google Scholar 

  51. Russell P. Nurse P: Negative regulation of mitosis by weeL-, a gene encoding a protein kinase homolog. Cell 49: 559–567, 1987

    Article  PubMed  CAS  Google Scholar 

  52. Gautier J, Matsukawa T, Nurse P. Mailer JL: Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature 339: 626–629, 1989

    Article  PubMed  CAS  Google Scholar 

  53. Norbury C, Blow J, Nurse P: Phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO K 10: 3321–3329, 1991

    CAS  Google Scholar 

  54. Krek W, Nigg EA: Differential phosphorylation of vertebrate p34cdc2 kinase at the G,/S and G/M transitions of the cell cycle: identification of major sites. EMBO J 10: 305–316, 1991

    PubMed  CAS  Google Scholar 

  55. Gould K, Nurse P: Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45, 1989

    Article  PubMed  CAS  Google Scholar 

  56. Atherton-Fessler S, Parker LL. Geahlen RL, Piwnica-Worms H: Mechanisms of p34cdc2 regulation. Mol Cell Biol 13: 1675–1685, 1993

    PubMed  CAS  Google Scholar 

  57. Kumagai A, Dunphy WG: The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64: 903–914, 1991

    Article  PubMed  CAS  Google Scholar 

  58. Enoch Y, Nurse P: Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60: 665–673, 1990

    Article  PubMed  CAS  Google Scholar 

  59. Murray AW, Kirshner MW: Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275–280, 1989

    Article  PubMed  CAS  Google Scholar 

  60. Murray AW, Solomon MJ, Kirschner MW: The role of cyclin synthesis and degradation in the control of MPF activity. Nature 339: 280–286, 1989

    Article  PubMed  CAS  Google Scholar 

  61. Solomon MJ, Glotzer M, Lee T, Philippe M, Kirschner MW: Cyclin activation of p34cdc2. Cell 63: 1013–1024, 1991

    Article  Google Scholar 

  62. Featherstone C, Russell P: Fission yeast pl07weel mitotic inhibitor is a tyrosine/serine kinase. Nature 349: 808–811, 1991

    Article  PubMed  CAS  Google Scholar 

  63. Parker L, Atherton-Fessler S, Lee MS, Ogg S, Faulk JL, Swenson KI, Piwnica-Worms H: Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a weel-dependent manner. EMBO J10:1255–1263, 1991

    Google Scholar 

  64. Izumi T, Walker DH, Mailer JL: Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulates its activity. Mol Biol Cell 3: 927–939, 1992

    PubMed  CAS  Google Scholar 

  65. Kumagai A, Dunphy G: Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70: 139–15, 1992

    Article  PubMed  CAS  Google Scholar 

  66. Izumi T, Mailer JL: Manuscript submitted

    Google Scholar 

  67. Hoffmann I, Clarke PR, Marcoti MJ, Karsenti E. Draetta G: Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12: 53–64, 1993

    PubMed  CAS  Google Scholar 

  68. Walker DH, Mailer JL: Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354: 314–317, 1991

    Article  PubMed  CAS  Google Scholar 

  69. Walker DH, DePaoli-Roach AA, Mailer JL: Multiple roles for protein phosphatase 1 in regulating the Xenopus early embryon ic cell cycle. Mol Biol Cell 3: 687–698, 1992

    PubMed  CAS  Google Scholar 

  70. Axton JM, Dombradi V, Cohen PTW, Glover DM: One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis. Cell 63: 33–46, 1990

    Article  PubMed  CAS  Google Scholar 

  71. Doonan JH, Morris NR: The BimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian protein phosphatase 1. Cell 54: 17–26, 1989

    Google Scholar 

  72. Kinoshita N, Ohkura H, Yanagida M: Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle. Cell 63: 405–415, 1990

    Article  PubMed  CAS  Google Scholar 

  73. Booher R, Beach D: Involvement of a type 1 protein phosphatase encoded by bwsl+ in fission yeast mitotic control. Cell 57: 1009–1016, 1989

    Article  PubMed  CAS  Google Scholar 

  74. Walker DH, Rempel RE, Mailer JL: The c-terminus of Xenopus phosphatase 1-γl determines it cell cycle-dependent regulation. Submitted

    Google Scholar 

  75. Sasaki K, Shima H, Kitagawa Y, Irino S, Sugimura T, Nagao M: Identification of members of the protein phosphatase lα gene in rat hepatocellular carcinomas. Jpn J Cancer Res 81: 1272–1280, 1990

    Article  PubMed  CAS  Google Scholar 

  76. Nielsen PJ, Thomas G, Mailer J: Increased phosphorylation of ribosomal protein S6 during meiotic maturation of Xenopus oocytes. Proc Natl Acad Sci USA 79: 2937–2941, 1982

    Article  CAS  Google Scholar 

  77. Wettenhall REH, Cohen P. Cauldwell B, Holland R: Differential phosphorylation of ribosomal protein S6 in isolated rat hepatocytes after induction with insulin and glucagon. FEBS Lett 148: 207–213, 1982

    Article  PubMed  CAS  Google Scholar 

  78. Gressner AM, Wool IG: Influence of glucagon and cyclic adenosine 3’:5’-monophosphate on the phosphorylation of rat liver ribosomal protein S6. J Biol Chem 251: 1500–1504, 1976

    PubMed  CAS  Google Scholar 

  79. Hasselbacher GK, Humel RE, Thomas G: Insulin-like growth factor, insulin or serum increase phosphorylation of ribosomal protein S6 during transition of stationary chick embryo fibroblasts into early G1 phase in the cell cycle. FEBS Lett 100: 185–190

    Google Scholar 

  80. Thomas G, Siegmann M, Kubler A-M, Gordon J, Jimenez de Asua L: Regulation of 40S ribosomal protein S6 phosphorylation in Swiss mouse 3T3 cells. Cell 19: 1015–1023, 1980

    Article  PubMed  CAS  Google Scholar 

  81. Nishimura J, Deuel TF: Platelet-derived growth factor stimulates the phosphorylation of ribosomal protein S6. FEBS Lett 156: 130–134, 1983

    Article  PubMed  CAS  Google Scholar 

  82. Duncan R, McConkey EH: Preferential utilization of phosphorylated 40-S subunits during initiation complex formation. Eur J Biochem 123: 535–538, 1982

    Article  PubMed  CAS  Google Scholar 

  83. Thomas G, Martin-Perez J, Siegmann M. Otto A: The effect of serum EGF, PGF2α, and insulin on S6 phosphorylation and the initiation of protein and DNA synthesis. Cell 30: 235–242, 1982

    Article  PubMed  CAS  Google Scholar 

  84. Erikson E, Mailer JL: A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci USA 82: 742–746, 1985

    Article  PubMed  CAS  Google Scholar 

  85. Erikson E, Mailer JL: Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem 261: 350–355, 1986

    PubMed  CAS  Google Scholar 

  86. Erikson E, Stefanovic D. Blenis J, Erikson RL, Mailer JL: Antibodies to Xenopus egg S6 kinase II recognize S6 kinase from progesterone and insulin-stimulated Xenopus oocytes and from proliferating chicken embryo fibroblasts. Mol Cell Biol 7: 3147–3155, 1987

    PubMed  CAS  Google Scholar 

  87. Jones SW, Erikson E, Blenis J, Mailer JL, Erikson R: A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci USA 85: 3377–3381, 1988

    Article  PubMed  CAS  Google Scholar 

  88. Mailer JL: Mitogenic signalling and protein phosphorylation in Xenopus oocytes. J Cyclic Nuc Prot Phos Res 11: 543–555, 1987

    Google Scholar 

  89. Ray LB, Sturgill TW: Rapid stimulation of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci USA 84: 1502–1506, 1987

    Article  PubMed  CAS  Google Scholar 

  90. Sturgill TW, Ray LB, Erikson E, Mailer JL: Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334: 715–718, 1988

    Article  PubMed  CAS  Google Scholar 

  91. Ballou LM, Jeno P, Thomas G: Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263: 1188–1194, 1988

    PubMed  CAS  Google Scholar 

  92. Ray LB, Sturgill TW: Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci USA 85: 3753–3757, 1988

    Article  PubMed  CAS  Google Scholar 

  93. Anderson NG, Mailer JL, Tonks NK, Sturgill TW: Activation of MAP kinase requires integration of signals from two distinct phosphorylation pathways. Nature 343: 651–653, 1990

    Article  PubMed  CAS  Google Scholar 

  94. Posada J, Sanghera J, Pelech S, Abersold R, Cooper J: Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 11: 2517–2228, 1991

    PubMed  CAS  Google Scholar 

  95. Cooper JA, Hunter T: Diverse mitogenic agents induce the phosphorylation of two related 42,000-dalton proteins on tyrosine in quiescent chick cells. Mol Cell Biol 4: 30–37, 1984

    PubMed  CAS  Google Scholar 

  96. Matsuda S, Kosako H, Takenaka, Moriyama K, Sakai H, Akiyama T, Gotoh Y, Nishida E: Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11: 973–982, 1992

    PubMed  CAS  Google Scholar 

  97. Gomez N, Cohen P: Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353: 170–173

    Google Scholar 

  98. Ahn NG, Seger R. Bratlien RL, Diltz D, Tonks NR. Krebs EG:Multiple components in a epidermal growth factor stimulated protein kinase cascade. J Biol Chem 266: 4220–4227, 1991

    PubMed  CAS  Google Scholar 

  99. Nakielny S, Cohen P, Wu J, Sturgill T: MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. EMBO J 11: 2123–2129, 1992.

    PubMed  CAS  Google Scholar 

  100. Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E: Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J 11:2903–2908, 1992

    PubMed  CAS  Google Scholar 

  101. Posada J, Cooper JA: Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255: 212–215, 1992

    Article  PubMed  CAS  Google Scholar 

  102. Kosako H, Nishida E, Gotoh Y: cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J 12: 787–794, 1993

    PubMed  CAS  Google Scholar 

  103. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jenson AM, Krebs EG: Human T-cell mitogen-activated protein kinases are related to yeast sig nal transduction kinases. J Biol Chem 267: 25628–25631, 1992

    PubMed  CAS  Google Scholar 

  104. Wu J, Harrison JK, Vincent LA, Haystead C, Haystead TAJ, Michel H, Hunt DF, Lynch KR, Sturgill TW: Molecular structure of a protein-tyrosine/threonine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase. Proc Natl Acad Sci USA 90: 173–177, 1993

    Article  PubMed  CAS  Google Scholar 

  105. Crews CM, Alessandrini A, Erikson R: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480, 1992

    Article  PubMed  CAS  Google Scholar 

  106. Hanks SW, Quinn AW, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Article  PubMed  CAS  Google Scholar 

  107. Dent P, Haser W, Haystead AJ, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase by v-raf in NIH 3T3 cells and in vitro. Science 3257: 104–1409, 1992

    Google Scholar 

  108. Kyriakis JM, App H. Zhang X, Banerjee P, Brautigan DL, Rapp VE, Avruch J: Raf-1 activates MAP kinase kinase. Nature 358: 417–421, 1992

    Article  PubMed  CAS  Google Scholar 

  109. Lange-Carter A. Pleiman CM. Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and raf. Science 260: 315–319, 1993

    Article  PubMed  CAS  Google Scholar 

  110. Thomas SM. DeMarco M. D’Arcangelo G, Helegoua S, Brugge JS: Ras is essential for nerve growth factor and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040, 1992

    Article  PubMed  CAS  Google Scholar 

  111. Wood KW. Sarechi C, Roberts TM, Blenis J: Ras mediates nerve growth factor receptor modulation of the signal-transducing protein kinases: MAP kinase, raf-1 and RSK. Cell 68: 1041–1050, 1992

    Article  PubMed  CAS  Google Scholar 

  112. Barrett CB, Erikson E, Mailer JL: A purified Xenopus S6 kinase kinase activates S6 kinase II and autophosphorylates on serine, threonine, and tyrosine residues. J Biol Chem 267: 4408–4415, 1992

    PubMed  CAS  Google Scholar 

  113. VanRenterghem B, Gibbs JB, Mailer JL: Reconstitution of p21ras-dependent and -independent mitogen-activated protein kinase activation in a cell-free system. J Biol Chem 268: 19935–19936, 1993

    PubMed  CAS  Google Scholar 

  114. Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y, Nishida E: Activation of mitogen-activated protein kinase and its activator by ras in intact cells and a cell-free system. J Biol Chem 267: 20346–20351, 1992

    PubMed  CAS  Google Scholar 

  115. Gotoh Y, Nishida E, Matsuda S, Shiina N. Kosako K, Shiokawa T, Akiyama T, Ohta K, Sakai H: In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349: 251–254, 1991

    Article  PubMed  CAS  Google Scholar 

  116. Ferrell JE, Wu M, Gerhart JC, Martin GS: Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 11: 1965–1971, 1991

    PubMed  CAS  Google Scholar 

  117. Meyerhof MG. Masui Y: Properties of a cytostatic factor from Xenopus eggs. Dev Biol 72: 182–186, 1979

    Article  PubMed  CAS  Google Scholar 

  118. Sagata N, Watanabe N, Vande Woude GF, Ikawa Y The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342: 512–418, 1989

    Article  PubMed  CAS  Google Scholar 

  119. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF: Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335: 519–525, 1988

    Article  PubMed  CAS  Google Scholar 

  120. Lorca T, Galas S, Fesquet D, Devault H. Cavadore J-C, Dorée M: Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca2+-calmodulin dependent event. EMBO J 10: 2087–2093, 1993

    Google Scholar 

  121. Yew N, Mellini ML, Vande Woude GF: Meiotic initiation by the mos protein in Xenopus. Nature 355: 649–652, 1992

    Article  PubMed  CAS  Google Scholar 

  122. Gabrielli BG, Roy LM, Mailer JL: Requirement for cdk 2 in cytostatic factor (CSF)-mediated metaphase II arrest. Science 259: 1766–1769, 1993

    Article  PubMed  CAS  Google Scholar 

  123. Haccard O, Sarcevic B, Lewellyn A, Hartley R, Roy L, Izumi T, Erikson E, Mailer JL: Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science, in press

    Google Scholar 

  124. Daar I, Yew N, VandeWoude GF: Inhibition of mos-induced oocyte maturation by protein kinase A. J Cell Biol 120: 1197–1202, 1993

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this chapter

Cite this chapter

Maller, J.L. (1993). On the importance of protein phosphorylation in cell cycle control. In: Khandelwal, R.L., Wang, J.H. (eds) Reversible Protein Phosphorylation in Cell Regulation. Developments in Molecular and Cellular Biochemistry, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2600-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2600-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-2637-3

  • Online ISBN: 978-1-4615-2600-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics