Skip to main content

Inosine 5’-Monophosphate Dehydrogenase as a Chemotherapeutic Target

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 370))

Abstract

Inosine 5’-monophosphate, EC 1.1.1.205 (IMPDH) catalyzes the conversion of IMP to XMP utilizing NAD as a proton acceptor. Its role in catalyzing the rate determining step in the biosynthesis of GTP1 gives IMPDH a position of central importance in cellular activity because of the myriad activities of GTP in biosynthesis and cellular regulation. The activity of IMPDH is much higher in proliferating tissues, both normal and malignant 2, 3 suggesting that the salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase is probably inadequate to satisfy the requirements of dividing cells for guanine nucleotides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G Weber, H. Nakamura, Y. Natsumeda, T. Szekeres and M. Nagai, Regulation of GTP synthesis. Advan. Enzyme Regul. 32: 57(1992).

    Article  CAS  Google Scholar 

  2. R.C. Jackson, H.P. Morris and G. Weber, Partial purification, properties and regulation of inosine 5’-monophosphate dehydrogenase in normal and malignant rat tissues, Biochem. J. 166: 7 (1977)

    Google Scholar 

  3. R.C. Jackson, G. Weber and H.P. Morris, IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256: 331 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. D.A. Cooney H.N. Jarayam, G. Gebeyehu, CR. Betts, J.A. Kelley, V.E. Marquez and D.G. Johns, The conversion of 2-ß-D-ribofuranosylthiazole-4-carboxamide to an anlogue of NAD with potent IMP dehydrogenase inhibitory properties. Biochem. Pharmcol. 31: 2133 (1982).

    Article  CAS  Google Scholar 

  5. K. Gharehbaghi, K.D. Pauli, J.A. Kelley, J.J. Barchi, J.E. Marquez, D.A. Cooney, A. Monks, D. Scudiero, K. Krohn and H.N. Jarayam, Cytotoxicity and characterization of an active metabolite of benzamide riboside, a novel inhibitor of IMP dehydrogenase. Int.J.Cancer 56:892 (1994)

    Article  PubMed  CAS  Google Scholar 

  6. B.M. Goldstein, J.E. Bell and V.E. Marquez, Dehydrogenase binding by tiazofurin anabolites, J.Med. Chem. 33:1123 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. T.J. Franklin and J.M. Cook, The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem.J. 113:515(1969).

    PubMed  CAS  Google Scholar 

  8. H.W. Sollinger, M.H. Deierhol, F.O. Belzer, A.G. Diethelm and R.S. Kauffman, RS-61443 — a phase I clinical trial and pilot rescue study, Transplantation 53:428 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Natsumeda, S. Ohno, H. Kawasaki, Y. Konno, G. Weber and K. Suzuki, Two distinct cDNAs for human IMP dehydrogenase. J. BioL Chem. 265:5292 (1990)

    PubMed  CAS  Google Scholar 

  10. L.C. Antonino, K. Sträub and J.C. Wu, Probing the active site of human IMP dehydrogenase using halogenated purine riboside 5’-monophosphate and covalent modification reagents, Biochemistry 33:1760(1994)

    Article  PubMed  CAS  Google Scholar 

  11. Y. Konno, Y. Natsumeda, M. Nagai, Y. Yamaji, S. Ohno, K. Suzuki and G. Weber, Expression of human IMP dehydrogenase Types I and II in Escherichia coli and distribution in human normal and leukemic cell lines, J. BioL Chem. 266:506 (1991).

    PubMed  CAS  Google Scholar 

  12. J.S. Dayton, T. Lindsten, C.B. Thompson and B.S. Mitchell, Effects of human T lymphocyte activation on inosine monophosphate dehydrogenase expression, J. Immunol. 752:984 (1994).

    Google Scholar 

  13. D.A. Glesne, F.R. Collart and E. Huberman, Regulation of IMP dehydrogenase gene expression by its end products, guanine nucleotides, Mol.Cell.Biol. 11:5417 (1991).

    PubMed  CAS  Google Scholar 

  14. S.F. Carr, E. Papp, J.C. Wu and Y. Natsumeda, Characterization of human Type I and Type II IMP dehydrogenase, J. Biol Chem 268:27286 (1993).

    PubMed  CAS  Google Scholar 

  15. S.D. Hodges, E. Fung, B.S. Renaux and F.F. Snyder, Increased activity, amount and altered kinetic properties of IMP dehydrogenase from mycophenolic acid-resistant neuroblastoma cells, J. Biol Chem 264: 18137 (1989).

    PubMed  CAS  Google Scholar 

  16. H.J Gilbert, CR. Lowe and W.T. Drabble, Inosine 5’-monophosphate dehydrogenase in Escherichia coli, Biochem.J. 183:481 (1979)

    PubMed  CAS  Google Scholar 

  17. D.J. Hupe, B. Azzolina and N.D. Behrens, IMP dehydrogenase from the intracellular parasite Eimeria tenella and its inhibition by mycophenolic acid, J.Biol.Chem 261:8363 (1986)

    PubMed  CAS  Google Scholar 

  18. L. Hedstrom and C.C. Wang, Mycophenolic acid and thiazole adenine dinucleotide inhibition of Tritrichomonas foetus inosine 5’-monophosphate dehydrogenase: implication on enzyme mechanism, Biochemistry, 29:849 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. T. Ikegami, Y. Natsumeda and G. Weber, Purification of IMP dehydrogenase from rat hepatoma 3924A, Life Sciences 40:2277 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. M.B. Cohen, J. Maybaum and W. Sadee, Guanine nucleotide depletion and toxicity in mouse T lymphoma (S-49) cells, J.Biol.Chem. 256:8713 (1981).

    PubMed  CAS  Google Scholar 

  21. T.J. Franklin and V.N. Jacobs, In preparation, (1994).

    Google Scholar 

  22. O. Itoh, S. Kuroiwa, S. Atsumi, K. Umezawa, T. Takeuchi and M. Hori, Induction by guanosine analogue oxanosine of reversion toward the normal phenotype of K-ras — transformed rat kidney cells, Cancer Res. 49:996 (1989).

    PubMed  CAS  Google Scholar 

  23. F.R. Collart and E. Huberman, Expression of IMP dehydrogenase in differentiating III-60 cells, Blood 75:570 (1990).

    PubMed  CAS  Google Scholar 

  24. K. Kiguchi, F.R. Collart, C. Henning-Chubb and E. Huberman, Induction of cell differentiation in melanoma cells by inhibitors of IMP dehydrogenase: altered patterns of IMP dehydrogenase expression and activity, Cell Growth and Differentiation 1:259 (1990).

    PubMed  CAS  Google Scholar 

  25. T.J. Franklin and P.A. Twose, Reduction in β-adrenergic response of culture glioma cells following depletion of intracellular GTP, Eur.J.Biochem. 77:113 (1977).

    Article  PubMed  CAS  Google Scholar 

  26. Y. Hata, Y. Natsumeda and G. Weber, Tiazofurin decreases Ras-GTP complex in K562 cells, Oncol.Res. 5:161 (1993).

    PubMed  CAS  Google Scholar 

  27. A.C. Allison, W.J. Kowalski, C.J. Muller, R.V. Waters and E.M. Egui, Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules, Transplant.Proc. 25, Suppl.2:67 (1993).

    Google Scholar 

  28. S.B. Carter, T.J. Franklin, D.F. Jones, B.J. Leonard, S.D. Mills, R.W. Turner and W.B. Turner, Mycophenolic acid; an anti-cancer compound with unusual properties, Nature 223:848 (1969).

    Article  PubMed  CAS  Google Scholar 

  29. M.J. Sweeney, K. Gerzon, P.N. Harris, R.E. Hohnes, G.A. Poore and R.H. Williams, Experimental antitumor activity and preclinical toxicology of mycophenolic acid, Cancer Res. 32:1795 (1972).

    PubMed  CAS  Google Scholar 

  30. D.S. Platt, personal communication.

    Google Scholar 

  31. W.W. Epinette, M.D. Cohen, C.M. Cohen, E.L. Jones and M.C. Greist, Mycophenolic acid for psoriasis, J.Am. Acad. Dermatol. 17:962 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. G.J. Tricot, H.N. Jarayam, E. Lapis, Y. Natsumeda, C.R. Nichols, P. Kneebone, N. Heerema, G. Weber and R. Hoffman, Biochemically directed therapy of leukemia with tiazofurin, a selective blocker of inosine 5’-monophosphate dehydrogenase activity, Cancer Res. 49: 3696 (1989).

    PubMed  CAS  Google Scholar 

  33. Anon. Scrip 1915: 11 (1994).

    Google Scholar 

  34. S.B. Carter, Pharmaceutical compositions containing mycophenolic acid or a salt or ester thereof.Anti-tumour and immunosuppressive activity, UK Patent # 1,157,100 (1967).

    Google Scholar 

  35. A.C. Allison and E.M. Egui, Mycophenolate mofetil, a rationally designed immunosuppressive drug, Clinical Transplantation 7: 96 (1993).

    Google Scholar 

  36. T. Osakabe, H. Uchida, Y. Masaki, K. Sato, Y. Nakayama, M. Ohkubo, K. Kumano, T. Endo, K. Watanabe and K. Aso, Studies on immunosuppression with low-dose cyclosporine combined with mizoribine in experimental and clinical cadaveric renal allotransplantation, Transplant. Proc. 21: 1598 (1989).

    PubMed  CAS  Google Scholar 

  37. R. Goldblum, Therapy of rheumatoid arthritis with mycophenolate mofetil, Clin.Exp. Rheumatol. 11(Suppl.8): S 117 (1993).

    Google Scholar 

  38. H-J. Liao and V. Stollar, Reversal of the antiviral activity of ribavirin against Sindbis virus in Ae. albopictus mosquito cells, Antiviral Res. 22: 285 (1993)

    Article  PubMed  CAS  Google Scholar 

  39. J. Balzarini, A. Karlsson, L. Wang, C. Bohman, K. Horska, I. Votruba, A. Fridland, A. Van Aerschot, P. Herdewijn and E. De Clercq, Eicar (5-ethynyl-1-ß — D-ribofuranosylimidazole-4-carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis, J. Biol.Chem. 268: 24591 (1993).

    PubMed  CAS  Google Scholar 

  40. D.L. Trump, K.D. Tutsch, J.M. Koeller and D.C. Tormey, Phase I clinical study with pharmacokinetic analysis of 2-ß-D-ribofuranosylthiazole-4-carboxamide 9NSC 286193) administered as a five-day infusion, Cancer Res. 45: 2853 (1985)

    PubMed  CAS  Google Scholar 

  41. T.J. Franklin and W.P. Morris, Pharmacodynamics of the inhibition of GTP synthesis in vivo by mycophenolic acid, In press: Advan.Enzyme Regul. 34 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franklin, T.J., Edwards, G., Hedge, P. (1995). Inosine 5’-Monophosphate Dehydrogenase as a Chemotherapeutic Target. In: Sahota, A., Taylor, M.W. (eds) Purine and Pyrimidine Metabolism in Man VIII. Advances in Experimental Medicine and Biology, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2584-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2584-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6105-3

  • Online ISBN: 978-1-4615-2584-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics