Skip to main content

Universality of the Lie-Isotopic Symmetries for Deformed Minkowskian Metrics

  • Chapter
Frontiers of Fundamental Physics

Abstract

Lie-isotopic and Lie-admissible theories are based on non-trivial realisation and generalisation of the conventional product and Lie algebra. Various studies are now performed in applying this formalism to metric spaces, gauge theory, classical and quantum mechanics, field theory, and quantum groups. Lie-isotopic construction provides consistentgeneralisations of Hamiltonian mechanics refered to as Birkhofflan mechanics and Birkhoff-Santilli mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.I. Blokhintsev, Phys. Lett. 12: 272 (1964).

    Article  ADS  Google Scholar 

  2. L.B. Redei. Phys. Rev. 145: 999 (1966).

    Article  ADS  Google Scholar 

  3. H.B. Nielsen and I. Picek, Phys. Lett. B144: 141 (1982).

    ADS  Google Scholar 

  4. B.H. Aronson, G.J. Bock, H-Y. Cheng, and E. Fischbach, Phys. Rev. D28: 476 (1983).

    ADS  Google Scholar 

  5. B.H. Aronson, G.J. Bock, H-Y. Cheng, and E. Fischbach, Phys. Rev. D28: 495 (1983).

    ADS  Google Scholar 

  6. A.K. Aringazin, Hadronic J. 12: 71 (1989).

    MATH  Google Scholar 

  7. F. Cardone, R. Mignani, and R.M. Santilli, J. Phys. G18: L61 (1992).

    ADS  Google Scholar 

  8. N. Grossman et al, Phys. Rev. Lett. 59: 18 (1987).

    Article  ADS  Google Scholar 

  9. M. Gasperini, Phys. Lett. B177: 51 (1986).

    MathSciNet  ADS  Google Scholar 

  10. M. Gasperini, Phys. Rev. D33: 3594 (1986); Phys. Lett. B163: 84 (1985).

    MathSciNet  ADS  Google Scholar 

  11. M. Gasperini, Phys. Lett. B141: 364 (1984).

    ADS  Google Scholar 

  12. M. Gasperini, Phys. Rev. D33: 3594 (1986); Mod. Phys. Lett. A2: 385 (1987); Class Quantum Grav. 4: 485 (1987).

    MathSciNet  ADS  Google Scholar 

  13. M. Gasperini, Nuovo Cimento B81: 7 (1984); Hadronic J. 7: 234, 650, 971 (1984).

    MathSciNet  ADS  Google Scholar 

  14. M. Gasperini, Nuovo Cimento A83: 309 (1984).

    MathSciNet  ADS  Google Scholar 

  15. J. Ellis, M. Gaillard, D. Nanopoulos, and S. Rudaz, Nucl. Phys. B176: 61 (1980).

    Article  ADS  Google Scholar 

  16. A. Zee, Phys. Rev. D25: 1864 (1982).

    ADS  Google Scholar 

  17. N. Rosen, Astrophys. J. 297: 347 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  18. A.K. Aringazin and G.S. Asanov, Gen. Rel. Grav. 17: 1153 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A.K. Aringazin and G.S. Asanov, Rep. Math. Phys. 25: 183 (1988).

    Article  ADS  MATH  Google Scholar 

  20. H. Rund, “The Differential Geometry of Finsler Spaces,” Springer, Berlin (1959)

    Book  MATH  Google Scholar 

  21. G.S. Asanov, “Finsler Geometry, Relativity and Gauge Theories,” D.Reidel, Dordrecht(1985).

    Book  MATH  Google Scholar 

  22. M. Matsumoto, “Foundations of Finsler Geometry and Special Finsler Spaces,” Diseisha Press, Kaiseisha (1986).

    MATH  Google Scholar 

  23. G.S. Asanov and S.P. Ponomarenko, “Finsler Fiber Bundle Over Space-Time, Associated Gauge Fields and Connections”Stiinca, Kishinev (1989).

    Google Scholar 

  24. A.K. Aringazin and A.L. Mikhailov, Class, and Quantum Grav.8: 1685 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R.M. Santilli, “Foundations of Theoretical Mechanics,” Vol.11, Springer, New York (1983).

    Book  MATH  Google Scholar 

  26. R.M. Santilli, “Isotopic Generalization of Galilei’s and Einstein’s Relativities,” Vols. I, II, Hadronic Press, Palm Harbor (1991).

    Google Scholar 

  27. J. Kadeisvili, “Santilli’s Isotopies of Contemporary Algebras, Geometries and Relativities,” Hadronic Press, Palm Harbor (1992).

    MATH  Google Scholar 

  28. A.K. Aringazin, A. Jannussis, D.F. Lopez, M. Nishioka, and B. Veljanoski, “Santilli’s LieIsotopic Generalization of Galilei’s and Einstein’s Relativities,” Kostarakis Publishers, Athens (1991).

    Google Scholar 

  29. A.K. Aringazin, A. Jannussis, D.F. Lopez, M. Nishioka, and B. Veljanoski, Algebras, Groups and Geometries 7: 211 (1990).

    MathSciNet  MATH  Google Scholar 

  30. R.M. Santilli, Lett. Nuovo Cimento 37: 545 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  31. R.M. Santilli, Hadronic J. 8: 25, 36 (1985).

    MathSciNet  MATH  Google Scholar 

  32. G.Yu. Bogoslovski, Nuovo Cimento B40: 116 (1977); B43: 377 (1978).

    ADS  Google Scholar 

  33. C.M. Will, “Theory and Experiment in Gravitational Physics,” Cambridge Univ. Press, London (1981).

    Google Scholar 

  34. S. Ikeda, J. Math. Phys. 26: 958 (1985); Nuovo Cimento B100: 493 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. E. Witten, Nucl. Phys. B186: 412 (1981); S.Randjbar-Daemi, A.Salam, and J.Strathdee, Nucl. Phys. B214: 491 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Weinberg, Phys. Lett. B125: 265 (1983).

    MathSciNet  ADS  Google Scholar 

  37. M. Chaichian, A.P. Demichev, and N.F. Nelipa, Phys. Lett. B169: 327 (1986.

    MathSciNet  ADS  Google Scholar 

  38. M.B. Green, J.H. Schwarz, and E. Witten, “Superstring Theory,” Cambridge Univ. Press, Cambridge (1987).

    MATH  Google Scholar 

  39. W. Siegel, “Introduction to String Theory,” World Sci., Singapore (1988).

    Book  Google Scholar 

  40. A.M. Polyakov, “Gauge Fields and Strings,” Harwood Academic Publ., Chur (1987).

    Google Scholar 

  41. E. Witten, Preprint IASSNS-HEP-88/32 (1988).

    Google Scholar 

  42. M. Gasperini, Hadronic J. 6: 935, 1462 (1983); M.Nishioka, Hadronic J. 7: 1636 (1984).

    MathSciNet  MATH  Google Scholar 

  43. A. Jannussis, G. Brodimas, and R. Mignani, J. Phys. A24: L775 (1991).

    MathSciNet  ADS  Google Scholar 

  44. “Proc. of the Third Workshop on Lie-Admissible Formulations,” Hadronic Press, Nonantum (1981); “Proc. of the First Intern. Confer. on Non-Potential Interactions and Their Lie-Admissible Treatment,” Hadronic Press, Nonantum (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aringazin, A.K., Aringazin, K.M. (1994). Universality of the Lie-Isotopic Symmetries for Deformed Minkowskian Metrics. In: Barone, M., Selleri, F. (eds) Frontiers of Fundamental Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2560-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2560-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6093-3

  • Online ISBN: 978-1-4615-2560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics