Skip to main content

Abstract

MOS transistor characteristics represent an invaluable and easy-to-access source of information on the intrinsic properties of SOI structures as well as on the process-induced defects. In this chapter, attention will be given to the most important phenomena and parameters of SOI—MOS transistors. We will focus on the ohmic region of operation. It is clear that the standard expressions existing for bulk-Si—MOSFETs apply, without any major modification, to SOI transistors, provided that they have a contact with the Si film (five-terminal devices) and are fabricated in non-fully depleted films (relatively thick or highly doped). Although the back gate-bias acts as an extra experimental parameter, its practical influence on the operation of partially depleted MOSFETs is rather limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S. Cristoloveanu and D. Ioannou, “Adjustable confinement of the electron gas in dual-gate silicon-on-insulator MOSFETs,” Superlattices Microstruct., vol. 8, p. 131, 1990.

    Article  Google Scholar 

  2. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, “Double-gate silicon on insulator transistor with volume inversion: a new device with greatly enhanced performance,” IEEE Electron Device Lett., vol. 8, p. 410, 1987.

    Article  Google Scholar 

  3. T. Ouisse, S. Cristoloveanu, and D.K. Maude, “Experimental investigation of SOI MOSFETs at high magnetic field and low temperature,” J. Appl. Phys., vol. 74, p. 408, 1993.

    Article  Google Scholar 

  4. K. Kato, T. Wada, and K. Taniguchi, “Analysis of kink characteristics in silicon on insulator MOSFETs using two-carrier modeling,” IEEE Trans. Electron Devices, vol. 32, p. 458, 1985.

    Article  Google Scholar 

  5. J. Tihanyi and H. Schlötterer, “Properties of ESFI MOS transistors due to the floating substrate and finite volume,” IEEE Trans. Electron Devices, vol. 22, p. 1017, 1975.

    Article  Google Scholar 

  6. R. Howes, W. Redman-White, K.G. Nichols, S.J. Murray, and P.J. Mole, “Modeling and simulation of silicon on sapphire MOSFETs for analog circuit design,” ESSDERC’90 Conf. Proc., Adam Hilger, Bristol, p. 539, 1990.

    Google Scholar 

  7. E. Simoen, B. Dierickx, and C. Claeys, “Kink-related noise overshoot in SOI n-MOSFETs operating at 4.2 K,” Electron. Lett., vol. 28, p. 577, 1992.

    Article  Google Scholar 

  8. J.Y. Choi and J.G. Fossum, “Analysis and control of floating body bipolar effects in fully depleted submicrometer SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 38, p. 1384, 1991.

    Article  Google Scholar 

  9. J. Chen, F. Assaderaghi, H.J. Wann, P. Ko, C. Hu, P. Cheng, R. Solomon, and T-Y. Chan, “An accurate model of thin film SOI MOSFET breakdown voltage,” IEDM’91 Conf. Proc., p. 671, 1991.

    Google Scholar 

  10. J.G. Fossum, S. Krishnan, and P.C. Yeh, “Performance limitations of deep-submicron fully depleted SOI MOSFETs,” 1992 IEEE Int. SOI Conf. Proc., p. 132, 1992.

    Google Scholar 

  11. T. Ouisse, G. Ghibaudo, J. Brini, S. Cristoloveanu, and G. Borel, “Investigation of floating body effects in silicon-on-insulator metal-oxidesemiconductor field-effect transistors,” J. Appl. Phys., vol. 70, p. 3912, 1991.

    Article  Google Scholar 

  12. T. Ouisse, “Modèles physiques et analyse du fonctionnement des composants MOS intégrés sur SIMOX,” Ph.D. Dissertation, Inst. Nat. Polytechn., Grenoble, 1991.

    Google Scholar 

  13. J.S.T. Huang, J.S. Kueng, and T. Fabian, “An analytical model for snapback in n-channel SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 38, p. 2082, 1991.

    Article  Google Scholar 

  14. M. Matloubian, C.E.D. Chen, B.Y. Mao, R. Sundaresan, and G.P. Polack, “Modeling of the subthreshold characteristics of SOI MOSFETs with floating body,” IEEE Trans. Electron Devices, vol. 37, p. 1985, 1990.

    Article  Google Scholar 

  15. M. Haond and J.P. Colinge, “Analysis of drain breakdown voltage in SOI n-channel MOSFETs,” Electron. Lett., vol. 25, p. 1640, 1989.

    Article  Google Scholar 

  16. G.A. Armstrong, J.R. Davis, and A. Doyle, “Characterization of bipolar snapback and breakdown voltage in thin film SOI transistors by two-dimensional simulation,” IEEE Trans. Electron Devices, vol. 38, p. 328, 1991.

    Article  Google Scholar 

  17. O. Faynot, A.J. Auberton-Hervé, and S. Cristoloveanu, “Investigation of the influence of the film thickness in accumulation-mode fully depleted SIMOX MOSFETs,” ESSDERC’92 Conf. Proc., Elsevier, Amsterdam, p. 807, 1992.

    Google Scholar 

  18. K.K. Young and J.A. Burns, “Avalanche-induced drain-source breakdown in silicon on insulator n-MOSFETs,” IEEE Trans. Electron Devices, vol. 35, p. 426, 1988.

    Article  Google Scholar 

  19. M. Yoshimi, M. Takahashi, T. Wada, K. Kato, S. Kambayashi, M. Kemmochi, and K. Natori, “Analysis of the drain breakdown mechanism in ultra thin film SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 37, p. 2015, 1990.

    Article  Google Scholar 

  20. L.J. McDaid, S. Hall, K.I. Nuttall, and W. Eccleston, “Comparison of instabilities observed in electrical characteristics of silicon on insulator MOSFETs, both above and below threshold voltage,” Electron. Lett., vol. 28, p. 1441, 1992.

    Article  Google Scholar 

  21. B. Zhang, A. Yoshino, and T.P. Ma, “Single transistor latch-induced degradation of front-and back-channel thin film SOI transistors,” IEEE Electron Device Lett., vol. 13, p. 282, 1992.

    Article  Google Scholar 

  22. L.J. McDaid, S. Hall, W. Eccleston, and J.C. Alderman, “Reduction of the latch effect in SOI MOSFETs by the silicidation of the source,” ESSDERC’91 Conf. Proc., Microelectron. Eng., vol. 15, p. 203, 1991.

    Article  Google Scholar 

  23. M. Matloubian, “Smart body contact for SOI MOSFETs,” 1989 IEEE SOS/SOI Technol. Conf. Proc., p. 128, 1989.

    Google Scholar 

  24. Y. Ohmura and K. Izumi, “Simplified analysis of body contact effect for MOSFET/SOI,” IEEE Trans. Electron Devices, vol. 35, p. 1391, 1988.

    Article  Google Scholar 

  25. M. Patel, P. Ratnam, and C.A.T. Salama, “A novel body contact for SIMOX based SOI MOSFETs,” Solid-State Electron., vol. 34, p. 1071, 1991.

    Article  Google Scholar 

  26. M. Gao, J.P. Colinge, L. Lauwers, S. Wu, and C. Claeys, “Twin—MOSFET structure for suppression of kink and parasitic bipolar effects in SOI MOSFETs at room and liquid helium temperatures,” Solid-State Electron., vol. 35, p. 505, 1992.

    Article  Google Scholar 

  27. J. Gautier and A.J. Auberton-Hervé, “A latch phenomenon in buried n-body SOI NMOSFETs,” IEEE Electron Device Lett., vol. 12, p. 372, 1991.

    Article  Google Scholar 

  28. J.M.T. Thomson and H.B. Stewart, in Nonlinear Dynamics and Chaos, Wiley, New York, 1986.

    Google Scholar 

  29. J. Brini and G. Kamarinos, “The unijunction transistor used as a high sensitivity magnetic sensor,” Sensors Actuators, vol. 2, p. 149, 1981/82.

    Article  Google Scholar 

  30. S. Cristoloveanu, “A review of the electrical properties of SIMOX substrates and their impact on device performance,” J. Electrochem. Soc., vol. 138, p. 3131, 1991.

    Article  Google Scholar 

  31. K. Kato and K. Taniguchi, “Numerical analysis of switching characteristics in SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 33, p. 133, 1986.

    Article  Google Scholar 

  32. H. Hazama, M. Yoshimi, M. Takahashi, S. Kambayashi, and H. Tango, “Suppression of drain current overshoot in SOI—MOSFETs using ultrathin SOI substrates,” Electron. Lett., vol. 24, p. 1266, 1988.

    Article  Google Scholar 

  33. F. Assaderaghi, J. Chen, R. Solomon, T.Y. Chan, P.K. Ko, and C. Hu, “Transient behavior of subthreshold characteristics of fully depleted SOI MOSFETs,” IEEE Electron Device Lett., vol. 12, p. 518, 1991.

    Article  Google Scholar 

  34. M.R. Tack, M. Gao, C.L. Claeys, and G.J. Declerck, “The multistable charge-controlled memory effect in SOI MOS transistors at low temperatures,” IEEE Trans. Electron Devices, vol. 37, p. 1373, 1990.

    Article  Google Scholar 

  35. J. Wang, N. Kistler, J. Woo, and C.R. Viswanathan, “Threshold voltage instability at low temperatures in partially depleted thin-film SOI MOSFETs,” IEEE Electron Device Lett., vol. 12, p. 300, 1991.

    Article  Google Scholar 

  36. C. Leroux, J. Gautier, A.J. Auberton-Hervé, B. Giffard, and M. Spalanzani, “Parasitic transients induced by floating substrate effect and bipolar transistor on SOI technologies,” ESSDERC’91 Conf. Proc., Microelectron. Eng., vol. 15, p. 199, 1991.

    Article  Google Scholar 

  37. L.J. McDaid, S. Hall, P.H. Mellor, W. Eccleston, and J.C. Alderman, “Explanation of negative differential resistance in SOI MOSFETs,” ESSDERC’89 Conf. Proc., Springer, Berlin, p. 885, 1989.

    Google Scholar 

  38. L.T. Su, K.E. Goodson, D.A. Antoniadis, M.I. Flik, and J.E. Chung, “Measurement and modeling of self-heating effects in SOI n-MOSFETs,” IEDM’92 Conf. Proc., p. 357, 1992.

    Google Scholar 

  39. R.J.T. Bunyan, M.J. Uren, J.C. Alderman, and W. Eccleston, “Use of noise thermometry to study the effects of self-heating in submicrometer SOI MOSFETs,” IEEE Electron Device Lett., vol. 13, p. 279, 1992.

    Article  Google Scholar 

  40. M. Berger and Z. Chai, “Estimation of heat transfer in SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 38, p. 871, 1991.

    Article  Google Scholar 

  41. T. Elewa, F. Balestra, S. Cristoloveanu, I. Hafez, J.P. Colinge, A.J. Auberton-Hervé, and J. Davis, “Performance and physical mechanisms in SIMOX MOS transistors operated at very low temperature,” IEEE Trans. Electron Devices, vol. 37, p. 1007, 1990.

    Article  Google Scholar 

  42. D. Yachou, J. Gautier, and C. Raynaud, “Self-heating effects on static and dynamic SOI operation,” ESSDERC’93 Conf. Proc., Frontières, Gif-sur-Yvette, France, p. 695, 1993.

    Google Scholar 

  43. M. Haond and O. Le Néel, “Lateral isolation in SOI CMOS technology,” Solid-State Technol., p. 47, 1991.

    Google Scholar 

  44. M. Matloubian, R. Sundaresan, and H. Lu, “Measurement and modeling of the sidewall threshold voltage of mesa-isolated SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 36, p. 938, 1989.

    Article  Google Scholar 

  45. B. Mazhari, S. Cristoloveanu, D.E. Ioannou, and A.L. Caviglia, “Properties of ultra-thin wafer-bonded silicon on insulator MOSFETs,” IEEE Trans. Electron Devices, vol. 38, p. 1289, 1991.

    Article  Google Scholar 

  46. T. Elewa, B. Kleveland, S. Cristoloveanu, B. Boukriss, and A. Chovet, “Detailed analysis of edge effects in SIMOX—MOS transistors,” IEEE Trans. Electron Devices, vol. 39, p. 874, 1992.

    Article  Google Scholar 

  47. H.K. Lim and J.G. Fossum, “Threshold voltage of thin-film silicon-oninsulator (SOI) MOSFETs,” IEEE Trans. Electron Devices, vol. 30, p. 1244, 1983.

    Article  Google Scholar 

  48. B. Mazhari and D.E. Ioannou, “Surface potential at threshold in thin-film SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 40, p. 1129, 1993.

    Article  Google Scholar 

  49. D. Flandre and A. Terao, “Extended theoretical analysis of the steady-state linear behavior of accumulation-mode, long-channel p-MOSFETs on SOI substrates,” Solid-State Electron., vol. 35, p. 1085, 1992.

    Article  Google Scholar 

  50. G. Ghibaudo, “New method for the extraction of MOSFET parameters,” Electron. Lett., vol. 24, p. 543, 1988.

    Article  Google Scholar 

  51. H.S. Wong, M.H. White, T.J. Krutsick, and R.V. Booth, “Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs,” Solid-State Electron., vol. 30, p. 953, 1987.

    Article  Google Scholar 

  52. A.M. Ionescu, S. Cristoloveanu, and A. Rusu, “Derivative methods for threshold voltage extraction,” 16th Ann. Semiconductor Conf. Proc. (CAS’93), Sinaia, Romania, p. 197, 1993.

    Google Scholar 

  53. A. Terao, D. Flandre, E. Lora-Tomayo, and F. Van der Wiele, “Measurement of threshold voltages of thin-film accumulation-mode PMOS/SOI transistors,” IEEE Electron Device Lett., vol. 12, p. 682, 1991.

    Article  Google Scholar 

  54. S. Veeraraghavan and J.G. Fossum, “Short-channel effects SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 36, p. 522, 1989.

    Article  Google Scholar 

  55. Y. Ohmura, S. Nakashima, K. Izumi, and T. Ishii, “0.1-Am-gate, ultrathin film CMOS devices using SIMOX substrate with 80-nm-thick buried oxide layer,” Proc. IEDM’91, p. 675, 1991.

    Google Scholar 

  56. F. Balestra, M. Benachir, J. Brini, and G. Ghibaudo, “Analytical models of subthreshold swing and threshold voltage for thin-and ultra-thin-film SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 37, p. 2303, 1990.

    Article  Google Scholar 

  57. H.T. Chen and R.S. Huang, “An analytical model for back-gate effects on ultrathin-film SOI MOSFETs,” IEEE Electron Device Lett., vol. 12, p. 433, 1991.

    Article  Google Scholar 

  58. J.H. Sim and J.B. Kuo, “An analytical back-gate bias effect model for ultrathin SOI CMOS devices,” IEEE Trans. Electron Devices, vol. 40, p. 755, 1993.

    Article  Google Scholar 

  59. J. Brini, M. Benachir, G. Ghibaudo, and F. Balestra, “Threshold voltage and subthreshold slope of the volume-inversion MOS transistor,” IEE Proc.-G, vol. 138, p. 133, 1991.

    Article  Google Scholar 

  60. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, Y. Arimoto, and T. Itoh, “Analytical surface potential expression for thin-film double-gate SOI MOSFETs,” Solid-State Electron., vol. 37, p. 327, 1994.

    Article  Google Scholar 

  61. R.J. Van OYerstraeten, G.J. Declerck, and P.A. Mulls, “Theory of the MOS transistor in weak inversion,” IEEE Trans. Electron Devices, vol. 22, p. 282, 1975.

    Article  Google Scholar 

  62. D.J. Wo ters, J.P. Colinge, and H.E. Maes, “Subthreshold slope in thin-film SQMOSFETs,” IEEE Trans. Electron Devices, vol. 37, p. 2022, 1990.

    Article  Google Scholar 

  63. F. Balestra, “Analysis of the dependence of the subthreshold swing and the threshold voltage on the substrate voltage of thin-film SOI MOSFETs. Extraction of the interface state densities,” Solid-State Electron., vol. 35, p. 1783, 1992.

    Article  Google Scholar 

  64. J.P. Colinge, F. Van de Wiele, and D. Flandre, “Subthreshold slope of accumulation-mode P—channel SOI MOSFETs,” 1993 IEEE Int. SOI Conf. Proc., p. 146, 1993.

    Google Scholar 

  65. G. Ghibaudo and B. Cabon, “Influence of hot electron induced aging on the dynamic conductance of short channel MOSFETs,” Solid-State Electron., vol. 30, p. 1049, 1987.

    Article  Google Scholar 

  66. S.C. Sun and J.D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, p. 1497, 1980.

    Article  Google Scholar 

  67. T. Ouisse, S. Cristoloveanu, and G. Borel, “Influence of series resistances and interface coupling on the transconductance of fully depleted siliconon-insulator MOSFETs,” Solid-State Electron., vol. 35, p. 141, 1992.

    Article  Google Scholar 

  68. B. Cabon-Till, G. Ghibaudo, and S. Cristoloveanu, “Influence of source-drain series resistance on MOSFET field-effect mobility,” Electron. Lett., vol. 21, p. 457, 1985.

    Google Scholar 

  69. J. Wang, N. Kistler, J. Woo, and C.R. Viswanathan, “Mobility-field behavior of fully depleted SOI MOSFETs,” IEEE Electron Device Lett., vol. 15, p. 117, 1994.

    Article  Google Scholar 

  70. P. McLarty, S. Cristoloveanu, and O. Faynot, “Parameter extraction in MOSFETs with ultra-thin gate oxides,” Solid-State Electron., in press, 1995.

    Google Scholar 

  71. H. Haddara, T. Elewa and S. Cristoloveanu, “Static and dynamic transconductance model for depletion-mode transistors: a new characterization method for silicon on insulator materials,” IEEE Electron Device Lett., vol. 9, p. 35, 1988.

    Article  Google Scholar 

  72. D.P. Vu and J.C. Pfister, “Characterization of beam-recrystallized Si films and their Si—SiO2 interface in silicon-on-insulator structures,” Appl. Phys. Lett., vol. 48, p. 50, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cristoloveanu, S., Li, S.S. (1995). MOS Transistor Characteristics. In: Electrical Characterization of Silicon-on-Insulator Materials and Devices. The Springer International Series in Engineering and Computer Science, vol 305. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2245-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2245-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9548-5

  • Online ISBN: 978-1-4615-2245-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics