Skip to main content

High-dose chemotherapy with peripheral blood progenitor autografting

  • Chapter
Concepts, Mechanisms, and New Targets for Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 78))

  • 55 Accesses

Abstract

There is increasing evidence that dose-intensification of cytotoxic agents can partially overcome the drug resistance of the cancer cell [1]. In the clinic, this strategy also results in increased toxicity to normal tissues. For those cytotoxics that are primarily dose-limited by myelosuppression (e.g., alkylating agents, carboplain, and etoposide), the use of autologous bone marrow transplantation (ABMT) has facilitated substantial dose escalation. This procedure involves the ‘harvesting’ of bone marrow from the iliac bone under general anesthesia. The marrow is then cryopreserved and can be used as a form of hematopoietic rescue following subsequent myelosuppressive chemotherapy. Very-high-dose chemotherapy supported in this way produces high rates of complete response in patients with lymphoma [2], germ cell tumors [3], and breast cancer [4] who have failed to respond to, or had relapsed following treatment with, more conventional doses of the same agents. Some patients achieve prolonged disease-free survival and are possibly cured. This modality has been associated with substantial morbidity and morality, however, principally due to the relatively prolonged period of pancytopenia prior to hematopoietic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frei E, Canellos G. Dose: a critical factor in cancer chemotherapy. Am J Med 69:585–594, 1980.

    Article  PubMed  Google Scholar 

  2. Gulati SC, Yahalom J, Acaba, et al. Treatment of patients with relapsed and resistant non-Hodgkin’s lymphoma using total body irradiation, etoposide and cyclophosphamide and autologous bone marrow transplantation. J Clin Oncol 10:936–941, 1992.

    PubMed  CAS  Google Scholar 

  3. Motzer R, Gulati S, Crown J, et al. High-dose chemotherapy and autologous bone marrow rescue for patients with refractory germ cell tumors: early intervention is better tolerated. Cancer 69:550–556, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Eder JP, Antman K, Peters WP, et al. High-dose combination alkylating agent chemotherapy with autologous marrow support for metastatic breast cancer. J Clin Oncol 4:1592–1597, 1986.

    PubMed  CAS  Google Scholar 

  5. Brecher G, Cronkite EP. Post-radiation parabiosis and survival in rats. Proc Soc Exp Biol Med 77:292–294, 1951.

    PubMed  CAS  Google Scholar 

  6. Goodman JW, Hodgson GS. Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714, 1962.

    PubMed  CAS  Google Scholar 

  7. Epstein RB, Graham TC, Buckner CD, Bryant J, Thomas ED. Allogeneic marrow engraftment by cross circulation in lethally irradiated dogs. Blood 28:5, 1966.

    Google Scholar 

  8. Debelik-Fehir, KM, Epstein RB. Restoration of hematopoiesis in dogs by infusion of cryopreserved autologous peripheral white cells following busulphan-cyclophosphamide treatment. Transplantation 20:63–67, 1992.

    Article  Google Scholar 

  9. Storb R, Graham TC, Epstein RB, Sale GE, Thomas ED. Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood 50:537–542, 1977.

    PubMed  CAS  Google Scholar 

  10. McCredie K. Cells capable of colony formation in the peripheral blood of man. Science 293–294, 1971.

    Google Scholar 

  11. Chervenick PA, Boggs DR. In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 37:131–135, 1971.

    PubMed  CAS  Google Scholar 

  12. Kurnick JE, Robinson WA. Colony growth of human peripheral white blood cells in vitro. Blood 37:136–141, 1971.

    PubMed  CAS  Google Scholar 

  13. Goldman JM. Autografting cryopreserved buffy coat cells for chronic granulocytic leukaemia in transformation. Exp Hematol 7:389–397, 1979.

    PubMed  Google Scholar 

  14. Abrams RA, Deisseroth AB. Prospects for accelerating hematopoietic recovery following myelosuppressive therapy by using autologous, cryopereserved hematopoietic stem cells collected solely from the peripheral blood. Exp Hematol 7(Suppl 5):●●, 1979.

    Google Scholar 

  15. Abrams RA, Glaubiger D, Appelbaum FR, Deisseroth AB. Result of attempted hematopoietic reconstitution using isologous, peripheral blood mononuclear cells: a case report. Blood 56:516–520, 1980.

    PubMed  CAS  Google Scholar 

  16. Hershko C, Gale RP, Ho WG, Cline MJ. Cure of aplastic anaemic in paroxysmal nocturnal haemoglobinuria by marrow transfusion from identical twin: failure of peripheralleucocyte transfusion to correct marrow aplasia. Lancet Index 1, Apr-Jun:945–947, 1979.

    Google Scholar 

  17. Kessinger A, Armitage JO, Landmark JD, Smith DM, Weisenburger DD. Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 71:723–727, 1988.

    PubMed  CAS  Google Scholar 

  18. Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 47:6, 1976.

    Google Scholar 

  19. Juttner CA, To LB, Haylock DN, Branford A, Kimber RJ. Circulating autologous stem cells collected in very early remission from acute non-lymphoblastic leukaemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol 61:739–745, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. To LB, Haylock DN, Kimber RJ, Juttner CA. High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 58:399–410, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Stiff PJ, Koester AR, Eagleton LE, et al. Autologous stem cell transplantation using peripheral blood stem cells. Transplantation 44:585–588, 1987.

    Article  PubMed  CAS  Google Scholar 

  22. Gianni AM, Bregni M, Siena S, et al. Rapid and complete hemopoietic reconstitution following combined transplantation of autologous blood and bone marrow cells. A changing role for high dose chemo-radiotherapy? Hematol Oncol 7:139–148, 1989.

    CAS  Google Scholar 

  23. Socinski MA, Elias A, Schnipper L, Cannistra SA, Antman KH, Griffin JD. Granulocytemacrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 28:1194–1198, 1988.

    Article  Google Scholar 

  24. Gianni AM, Bregni M, Stern AC, et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 2:580–584, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Elias AD, Ayash L, Anderson KC, et al. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 79:3036–3044, 1992.

    PubMed  CAS  Google Scholar 

  26. Peters WP, Rosner G, Ross M, et al. Comparative effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 81:1709–1719, 1993.

    PubMed  CAS  Google Scholar 

  27. Sheridan WP, Begley GC, Juttner CA, et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339:640–649, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Huan SD, Hester J, Spitzer G, et al. Influence of mobilized peripheral blood cells on the hematopoietic recovery by autologous marrow and recombinant human granulocyte-macrophage colony-stimulating factor after high-dose cyclophosphamide, etoposide, and cisplatin. Blood 79:3388–3393, 1992.

    PubMed  CAS  Google Scholar 

  29. Holland HK, Moore MR, Winton EF, Heffner LT, Hillver CD, Geller RB. Hematologic recovery after high-dose chemotherapy for breast cancer with rhu-GF is similar between autologous bone marrow transplantation vs peripheral blood stem cell mobilization. Blood (Suppl l):71a, 1992.

    Google Scholar 

  30. Beyer J, Schwella N, Zingsem J, et al. Bone marrow versus peripheral blood stem cells as rescue after high-dose chemotherapy. Blood 82(Suppl l):454a, 1993.

    Google Scholar 

  31. Shea TC, Mason JR, Storniolo AM, et al. Sequential cycles of high-dose carboplatin administered with recombinant human granulocyte-macrophage colony-stimulating factor and repeated infusions of autologous peripheral-blood progenitor cells: a novel and effective method for delivering multiple courses of dose-intensive therapy. J Clin Oncol 10:464–473, 1992.

    PubMed  CAS  Google Scholar 

  32. Teppler I, Cannistra S, Anderson K, et al. Use of peripheral blood progenitor cells for support of repetitive high-dose carboplatin chemotherapy in previously untreated outpatients with cancer. Blood 80(Suppl l):71a, 1992.

    Google Scholar 

  33. Brugger W, Birken R, Bertz H, et al. Peripheral blood progenitor cells mobilised by chemotherapy plus G-CSF accelerate both neutrophil and platelet recovery after high-dose VP16, ifosfamide and cisplatin. Br J Haematol 84:402–408, 1994.

    Article  Google Scholar 

  34. Kritz A, Crown J, Motzer R. Beneficial impact of peripheral blood progenitor cells in patients with metastatic breast cancer treated with high-dose chemotherapy plus GM-CSF: a randomized trial. Cancer 71:2515–2521, 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Crown J, Kritz A, Vahdat L, et al. Rapid administration of multiple cycles of high-dose myelosuppressive chemotherapy in patients with metastatic breast cancer. J Clin Oncol 11:1144–1149, 1993.

    PubMed  CAS  Google Scholar 

  36. Crown J, Wasserheit C, Hakes T, et al. Rapid delivery of multiple high-dose chemotherapy courses with granulocyte colony-stimulating factor and peripheral blood-derived hemato-poietic progenitor cells. J Natl Cancer Inst 84:1935–1936, 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Crown J, Vahdat L, Raptis G, et al. Rapidly cycled courses of high-dose chemotherapy supported by filgrastim and peripheral blood progenitors in patients with metastatic breast cancer. Proc Am Soc Clin Oncol 13:110(Abst), 1994.

    Google Scholar 

  38. Faucher C, Le Corroller A, Blaise D, et al. GCSF primed peripheral blood progenitor cell autotransplantation: clinical assessment and cost-effectiveness study. Blood 82(Suppl 1): 234a, 1993.

    Google Scholar 

  39. Haas R, Hohaus S, Ehrhardt R, Goldschmidt H, Hunstein W. Autografting with rhGCSF mobilized blood stem cells in patients with chemosensitive malignancies. Blood (Suppl l):238a, 1992.

    Google Scholar 

  40. Siena S, Bregni M, Brando B, et al. Flow cytometry for clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients. Blood 77: 400–409, 1991.

    PubMed  CAS  Google Scholar 

  41. Fritsch G, Emminger W, Buchinger P, Printz D, Gadner H. CD34-positive in peripheral blood correlate with colony-forming capacity. Exp Hematol 19:1079–1083, 1991.

    PubMed  CAS  Google Scholar 

  42. Janssen WE, Farmelo MJ, Lee C, Smilee R, Kronish L, Elfenbein JG. The CD34+ cell fraction in bone marrow and blood is not universally predictive of CFU-GM. Exp Hematol 20:528–530, 1992.

    PubMed  CAS  Google Scholar 

  43. Spitzer G, Spencer V, Dunphy F, et al. Hematological response to growth factors during peripheral blood stem cell collection is more predictive for early neutrophil recovery after high-dose chemotherapy with PBSC support than CD34 cells or CFU-GM infused. Blood (Suppl l):535a, 1992.

    Google Scholar 

  44. Bitran JD, Martinec J, Okuno T, et al. Autologous bone marrow transplantation using peripheral blood hematopoietic progenitor cells. The total number of Cd34+ cells/kg predicts for hematologic engraftment. Blood 82(Suppl l):288a, 1993.

    Google Scholar 

  45. Pettengell R, Testa NG, Swindell R, Crowther D, Dexter TM. Transplantation potential of hematopoietic cells released into the circulation during routine chemotherapy for nonHodgkin’s lymphoma. Blood 82:2239–2248, 1993.

    PubMed  CAS  Google Scholar 

  46. Kotasek D, Shepherd KM, Sage RE, et al. Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma, myeloma and solid tumors. Bone Marrow Transplant 9:11–17, 1992.

    PubMed  CAS  Google Scholar 

  47. Haas R, Mohle R, Fruhauf S, et al. Autografting with filgrastim-mobilized peripheral blood stem cells in malignant lymphoma-predictive factors for mobilization efficiency. Blood 82(Suppl l):648a, 1993.

    Google Scholar 

  48. Chao NJ, Long GD, Negrin RS, et al. G-CSF and peripheral blood progenitor cells. Lancet 339:1410, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Weisdorf D, Daniels K, Miller W, et al. Bone marrow versus peripheral blood stem cells for autologous lymphoma transplantation: a prospective randomized trial. Blood 82(Suppl l):444a, 1993.

    Google Scholar 

  50. Kessinger A, Jackson J, Anderson J, et al. High dose therapy and autologous peripheral stem cell transplantation for low grade non-Hodgkin lymphoma: Effect of GM-CSF on the autograft. Blood 80(Suppl l):332a, 1992.

    Google Scholar 

  51. Janakiraman N, Niewenhuis L, O’Connell S, Saeed S, Raman S. Comparative mobilization of peripheral blood stem cells with cytoxan or recombinant granulocyte colony-stimulating factor (G-CSF). Blood 80(Suppl l):526a, 1992.

    Google Scholar 

  52. Teshima T, Harada M, Takamatsu Y, et al. Cytotoxic drug and cytotoxic drug/G-CSF mobilization of peripheral blood stem cells and their use for autografting. Bone Marrow Transplant 10:215–220, 1992.

    PubMed  CAS  Google Scholar 

  53. Rosenfeld C, Nemunaitis J, Zeigler Z, Shadduck R. Effect of rhGM-CSF on cyclopho-sphamide mobilized peripheral blood stem cells: a study in patients with non-Hodgkin’s lymphoma. Blood 80(Suppl l):533a, 1991.

    Google Scholar 

  54. Kouides PA, Frediani K, Kempski M, Heal J, DiPersio JF, Abboud CN. Sequential mobilization of peripheral blood stem cells (PBSc): effects of CSF alone followed by cytoxan-CSF on CD34+ subsets and progenitor recruitment. Blood 80(Suppl 1):527a, 1992.

    Google Scholar 

  55. Gianni AM, Bregni M, Siena S, et al. Granulocyte-macrophage colony-stimulating factor or granulocyte-colony-stimulating factor infusion makes high-dose etoposide a safe outpatient regimen that is effective in lymphoma and myeloma patients. J Clin Oncol 10:1955–1962, 1992.

    PubMed  CAS  Google Scholar 

  56. West W, Schwartzberg L, Citron P, Schnell R, Blance R, Birch R. High dose cyclopho-sphamide-based mobilization of peripheral blood stem cells: experience with outpatient delivery. Proc Am Soc Clin Oncol 11:402, 1992.

    Google Scholar 

  57. Shimazaki C, Oku N, Ashihara E, et al. Collection of peripheral blood stem cells mobilized by high-dose Ara-C plus VP-16 or aclarubicin followed by recombinant human granulocyte-colony stimulating factor. Bone Marrow Transplant 10:341–346, 1992.

    PubMed  CAS  Google Scholar 

  58. Seidman AD, Scher HI, Gabrilove J, et al. Dose-intensified MVAC with recombinant granulocyte colony stimulating factor as initial therapy in advanced urothelial cancer. J Clin Oncol 11:408–414, 1993.

    PubMed  CAS  Google Scholar 

  59. Dodwell D, Ferguson J, Howell A, Testa N, Campbell A. Intensification of adriamycin and cyclophosphamide treatment for advanced breast cancer with subcutaneous G-CSF: identification of optimal time to collect peripheral blood stem cells. Proc Am Soc Clin Oncol 10:56, 1991.

    Google Scholar 

  60. Pettengell R, Testa NG, Swindell R, Crowther D, Dexter TM. Transplantation potential of hematopoietic cells released into the circulation during routine chemotherapy for nonHodgkin’s lymphoma. Blood 82:2239–2248, 1993.

    PubMed  CAS  Google Scholar 

  61. Bengala C, Fennelly D, Shapiro F, et al. Taxol in combination with cyclophosphamide and G-CSF can improve the mobilization of peripheral blood progenitors in untreated locally advanced ovarian cancer. Blood 82(Suppl l):82a, 1993.

    Google Scholar 

  62. Kessinger A, Jackson J, Anderson J, et al. High dose therapy and autologous peripheral stem cell transplantation for low grade non-Hodgkin lymphoma: effect of GM-CSF on the autograft. Blood 80(Suppl l):332a, 1992.

    Google Scholar 

  63. Sheridan W, Begley G, Juttner C, De Luca E, To LB, Szer J, et al. Effect of different doses and schedules of R-Methug-CSF (Filgrastim) on mononuclear cell and PBPC collections and haematopoietic recovery after high dose chemotherapy and infusion of R-Methug-CSF mobilized peripheral blood progenitor cells without bone marrow. Blood (Suppl l):331a, 1992.

    Google Scholar 

  64. Somlo G, Sniecinski I, Ahn J, et al. Priming with G-CSF 10mcg/kg is more effective than 5mcg/kg in patients receiving high-dose chemotherapy followed by peripheral stem cell rescue. Blood 82(Suppl 1):642A, 1993.

    Google Scholar 

  65. Vredenburgh II, Ross M, Meisenberg B, et al. A short course of G-CSF for priming of peripheral blood progenitor cells (PBPC). Blood (Suppl l):291a, 1992.

    Google Scholar 

  66. Gasparetto C, Smith C, Gillio A, et al. Enrichment of peripheral blood stem cells with cytokine treatment in a preclinical model. Blood 76:541a, 1990.

    Google Scholar 

  67. Breoni M, Siena S, Di Nicola M, et al. Circulation of hematopoietic progenitors in the peripheral blood of breast cancer patients treated with high-dose cyclophosphamide and recombinant human interleukin-3. Proc Am Soc Clin Oncol 11:384, 1992.

    Google Scholar 

  68. Andrews RG, Bartelmez S, Knitter G, et al. A c-kit ligand, recombinant human stem cell factor, mediates reversible expansion of multiple CD34+ colony-forming cell types in blood and marrow of baboons. Blood 80:920–927, 1992.

    PubMed  CAS  Google Scholar 

  69. Briddell R, Hartley C, Moss S, McNeice I. The role of stem cell factor in mobilization of peripheral blood progenitor cells (PBPC) with marrow repopulating ability in mice. Blood 80(Suppl l):12a, 1992.

    Google Scholar 

  70. Brugger W, Bross D, Frisch J, et al. Mobilization of peripheral blood progenitor cells by sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following polychemotherapy with etoposide, ifosfamide, and cisplatin. Blood 79: 1193–1200, 1992.

    PubMed  CAS  Google Scholar 

  71. Schneider JG, Crown J, Shapiro F, et al. Ex vivo cytokine expansion of CD34-positive hematopoietic progenitors in bone marrow, placental cord blood, and cyclophosphamide & G-CSF mobilized peripheral blood. Blood 80(Suppl l):268a, 1992.

    Google Scholar 

  72. Pettengell R, Morgenstern GR, Woll PJ, Chang J, Rowlands W, Young R, Radford JA, Scarffe JH, Testa NG, Crowther D. Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single pheresis. Blood 82(12):3770–7, 1993.

    PubMed  CAS  Google Scholar 

  73. Passos-Coelho JL, Braine H, Davis JM, et al. Primed peripheral blood stem cells collected in a single large volume leukapheresis accelerate hematopoietic recovery after high-dose chemotherapy. Blood 82(Suppl l):84a, 1993.

    Google Scholar 

  74. Spitzer G, Spencer V, Dunphy F, et al. Are growth factors needed after peripheral blood stem cell tranplatantion? A randomized study to evaluate the question. Blood 82(Suppl l):288a, 1993.

    Google Scholar 

  75. Klumpff TR, Mangan KF, Goldberg SL, Pearlman ES, MacDonald JS. The effect of granulocyte-colony-stimulating factor on engraftment following autologous peripheral blood stem cell transplantation: a prospective randomized study. Blood 82(Suppl l):285a, 1993.

    Google Scholar 

  76. Schwartzberg L, Birch R, Heffernan M, West W. G-CSF is an effective supportive modality in peripheral blood stem cell transplantation. Blood 82(Suppl l):286a, 1993.

    Google Scholar 

  77. Ross AA, Cooper BW, Lazarus HM. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemistry and clonogenic assay techniques. Blood 82:2605–2610, 1993.

    PubMed  CAS  Google Scholar 

  78. Vredenburgh J, Bast RC, DeSombre K, Johnston W, Kamel A, Peters WP. Detection of breast cancer cells in the bone marrow or peripheral blood in patients with >10 positive nodes. Proc Am Assoc Cancer Res 34:1130, 1993.

    Google Scholar 

  79. Moss TJ, Sanders DG, Lasky LC, Bostrom B. Contamination of peripheral blood stem cell harvests by circulating neuroblastoma cells. Blood 76:1879–1883, 1990.

    PubMed  CAS  Google Scholar 

  80. Cooper BW, Gerson SL, Ross A, Horvath N, Lazarus HM. Peripheral blood progenitor cells provide rapid and sustained engraftment after high-dose chemotherapy in contamination. Blood (Suppl l):520a, 1992.

    Google Scholar 

  81. Miller W, Gaffney P, Weisdorf D. Peripheral blood cells are frequently contaminated with follicular lymphoma cells. Blooed 78(Suppl l):247a, 1991.

    Google Scholar 

  82. Bird JM, Bloxham D, Russell NH, Samson D, Apperley JF. Detection of clonally rearranged cells in PBSC harvests in multiple mycloma by imunoglobulin gene fingerprinting. Blood 82(Suppl l):265a, 1993.

    Google Scholar 

  83. Jurema M, Hunger S, Negrin R, Cleary M. Assessment of minimal residual disease in autologous peripheral blood stem cell transplantation for multiple myeloma. Blood 82(Suppl l):431a, 1993.

    Google Scholar 

  84. Brugger W, Bross KJ, Glatt M, Weber F, Mertelsman R, Kanz L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83:636–640, 1994.

    PubMed  CAS  Google Scholar 

  85. Carella AM, Frassoni F, Podesta M, et al. Intensive chemotherapy and G-CSF are capable in CML patients of recruiting CD34+/Dr-cells with high proliferative potential and sustain PN-negative polyclonal hematopoiesis. Blood 82(Suppl l):297a, 1993.

    Google Scholar 

  86. Talpaz M, Kantarjian H, Hester J, Champlin R, Deisseroth A: Autologous ‘in vivo’ purged bone marrow and peripheral stem cell transplant in chronic myclogenous leukemia: induction of cytogenetic response and interferon-alpha reponsiveness. Blood 82(Suppl l):378a, 1993.

    Google Scholar 

  87. Shpall EJ, Jones RB, Bast RC, et al. 4-hydroperoxycyclophosphamide (4-HC) purging of breast cancer from mononuclear cell fraction of bone marrow in patients receiving high-dose chemotherapy and autologous marrow support: A phase I trial. J Clin Oncol 9:85–93, 1990.

    Google Scholar 

  88. Berenson RJ, Bensinger WI, Hill RS, et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77:1717–1722, 1991.

    PubMed  CAS  Google Scholar 

  89. Shpall EJ, Jones RB, Bearman SJ, et al. Transplantation of enriched CD34 positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence mof CD34-positive peripheral blood progenitors and growth factors on engraftment. J Clin Oncol 12:28–36, 1994.

    PubMed  CAS  Google Scholar 

  90. Brugger W, Henschler R, Heimfeld S, Berenson RJ, Mertelsman R, Kanz L. Hematopoietic recovery after high-dose chemotherapy is identical with positively selected peripheral blood progenitor cells. Blood 82(Suppl l):455a, 1993.

    Google Scholar 

  91. Schiller G, Vescio R, Lee M, et al. Transplantation of autologous Cd34+ peripheral blood stem cells as treatment for multiple myeloma. Blood 82(Suppl l):198a, 1993.

    Google Scholar 

  92. Chayt K, Neben S, Mauch P: Deficient hematopoietic support capacity following transplantation of murine peripheral blood stem cells. Blood 78(Suppl l):532a, 1990.

    Google Scholar 

  93. Long G, Chao N, Negrin R, et al. Efficacy of peripheral blood-derived stem cell rescue compared with bone marrow plus PBSC rescue following high-dose chemotherapy. Blood 78(Suppl l):550a, 1990.

    Google Scholar 

  94. Brice P, Marolleau JP, Dombret H, Lepage E, Baruchel A, Adam M, et al. Autologous peripheral blood stem cell transplantation after high dose therapy in patients with advanced lymphomas. Bone Marrow Transplant 9:337–342, 1992.

    PubMed  CAS  Google Scholar 

  95. Pohlman B, Goormastic M, Dannley RA, Lichtin AE, Andresen SA, Bolwell B. Primed peripheral blood progenitor cells with or without bone marrow for hematopoietic reconstitution. Blood 82(Suppl l):289a, 1993.

    Google Scholar 

  96. Kouides PA, Abboud CN, Frediani KE, Belanger T, Silverman W, DiPersio JF. The infusion of mobilized peripheral blood stem cells alone after myeloablative therapy can accelerate hematopoietic recovery as rapidly as mobilized PBSCs withe autologous bone marrow. Blood 82(Suppl l):289a, 1993.

    Google Scholar 

  97. Udomsakdi C, Lansdorp PM, Hogge DE, Reid DS, Eaves AC, Eaves CJ. Characterization of primitive hematopoietic cells in normal human peripheral blood. Blood 80:2513–2521, 1992.

    PubMed  CAS  Google Scholar 

  98. Henschler R, Brugger W, Luft T, Frey T, Mertelsman R, Kanz L. Asessment of transplantation potential during large scale CD34+ immunoselection and ex vivo expansion of peripheral blood precursor cells. Blood 82(Suppl l):191a, 1993.

    Google Scholar 

  99. Uchida N, Murray L, Altenhofen J, et al. Kineic analysis and isolation of CD34+Thyl+Lin-cells from mobilized peripheral blood of multiple myeloma patients. Blood 82(Suppl l):324a, 1993.

    Google Scholar 

  100. Rice A, Boiron JM, Barbot C, et al. Cytokine mediated expansion of 5-FU resistant peripheral blood stem cells as opposed to bone marrow cells identifies primitive stem cells with self-renewal capacity. Blood 82(Suppl l):18a, 1993.

    Google Scholar 

  101. Bregni M, Magni M, Siena S, Di Nicola M, Bonadonna G, Gianni AM. Human peripheral blood hematopoietic progenitors are optimal targets of retroviral-mediated gene transfer. Blood 80:1418–1422, 1992.

    PubMed  CAS  Google Scholar 

  102. Bacigalupo A, Piaggio G, Podesta M, et al. Collection of peripheral blood hematopoietic progenitors from patients with severe aplastic anemia after prologned administration of granulocyte colony-stimulating factor. Blood 82:1410–1414, 1993.

    PubMed  CAS  Google Scholar 

  103. Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex-vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, Interleukin-lb, IL-6, IL-3, Interferon G and erythropoietin. Blood 81:2579–2584, 1993.

    PubMed  CAS  Google Scholar 

  104. Schneider JG, Crown J, Shapiro F, et al. Ex vivo cytokine expansion of CD34-positive hematopoietic progenitors in bone marrow, placental cord blood, and cyclophosphamide & G-CSF mobilized peripheral blood. Blood 80(Suppl l):268a, 1992.

    Google Scholar 

  105. Verbik DJ, Jackson JD, Pirruccello SJ, Dessinger A, Joshi SS. Augmentation of cytotoxicity of peripheral blood stem cells after in vitro activation with cytokines. Blood 80(Suppl l):433a, 1992.

    Google Scholar 

  106. Bierman P, Vose J, Anderson J, et al. Comparison of autologous bone marrow trans-plantation with peripheral blood stem cell transplantation for patients with Hodgkin’s Disease. Blood 82(Suppl l):445a, 1993.

    Google Scholar 

  107. Verkik DJ, Jackson JD, Pirruccello SJ, Patii KD, Kessinger A, Joshi SS. Characterization of GM-CSF mobilized human peripheral blood stem cell harvests obtained from consecutive collections. Blood 82(Suppl l):654a, 1993.

    Google Scholar 

  108. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep 70:163–169, 1986.

    PubMed  CAS  Google Scholar 

  109. Lichtman S, Ratain M, Budman DR, et al. Phase I trial of recombinant granulocyte-macrophage colony stimulating factor plus high dose cyclophosphamide in solid tumors. Proc Am Soc Clin Oncol 9:66, 1990.

    Google Scholar 

  110. Hudis C, Lebwohl D, Crown J, et al. Feasibility of adjuvant dose-intensive cyclophosphamide with G-CSF after doxorubicin in women with high risk stage II/III resectable breast cancer. Proc Am soc Clin Oncol 11:55, 1992.

    Google Scholar 

  111. Francis P, Crown J, Hudis C, et al. Growth factor-supported, high-intensity combined modality therapy of locally advanced breast cancer. Proc Am Soc Clin Oncol 12:100,1993.

    Google Scholar 

  112. Rusthoven J, Levin L, Eisenhauer E, et al. Two phase I studies of carboplatin dose escalation in chemotherapy-naive ovarian cancer patients supported with granulocyte-macrophage colony-stimulating factor. J Natl Cancer Inst 83:1748–1753, 1991.

    Article  PubMed  CAS  Google Scholar 

  113. O’Dwyer PJ, LaCreta FP, Schilder R, et al. Phase I trial of thiotepa in combination with recombinant human granulocyte-macrophage colony-stimulating factor. J Clin Oncol 8:1352–1358, 1992.

    Google Scholar 

  114. Pittman KB, To LB, Bayly JL, et al. Non-haematological toxicity limiting the application of sequential high-dose chemotherapy in patients with advanced breast cancer. Bone Marrow Transplant 10:535–540, 1992.

    PubMed  CAS  Google Scholar 

  115. Crown J, Raptis G, Vahdat L, et al. Rapid administration of sequential high dose cyclophosphamide, melphalan, thiotepa supported by filgrastim and peripheral blood progenitors in patients with metastatic breast cancer: a novel and very active treatment strategy. Proc Am Soc Clin Oncol, 13:110(Abst), 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crown, J.P., Fennelly, D. (1995). High-dose chemotherapy with peripheral blood progenitor autografting. In: Muggia, F.M. (eds) Concepts, Mechanisms, and New Targets for Chemotherapy. Cancer Treatment and Research, vol 78. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2007-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2007-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5829-9

  • Online ISBN: 978-1-4615-2007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics