Skip to main content

Potential for protein kinase C inhibitors in cancer therapy

  • Chapter
Concepts, Mechanisms, and New Targets for Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 78))

Abstract

The discovery of oncogenes has led to many novel approaches to cancer therapy. Because many oncogene products are on the growth-factor-signaling pathways, the inhibitors of these pathways are a logical focus for therapy. However, these same pathways are used by normal cells and tissues, and therefore it is not immediately apparent how selectivity could be obtained. This objection applies equally to many drugs in common use, e.g., prostaglandin synthesis inhibitors (aspirin), phosphodiesterase inhibitors (aminophylline), and Na+ K+ ATPase inhibitors (digoxin). The inappropriate activation of such pathways may change their relative importance for growth, and the growth of cancers is often accompanied by a high apoptotic rate compared to normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dekker LV, Parker PJ. Protein kinase C — a question of specificity. TIBS 73–77, 1994.

    Google Scholar 

  2. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 361:315–325, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Foster DA. Intracellular signalling mediated by protein-tyrosine kinases: networking through phospholipid metabolism. Cell Signalling 5:389–399, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Pelech SL, Vance DE. Signal transduction via phosphatidylcholine cycles. Trends Biochem Sci 14:28–30, 1989.

    Article  CAS  Google Scholar 

  5. Cook SJ, Wakelam MJO. Stimulated phosphatidylcholine hydrolysis as a signal transduction pathway in mitogenesis. Cell Signalling 3:273–282, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Boarder MR. A role for phospholipase D in control of mitogenesis. TIPS 15:57–62, 1994.

    PubMed  CAS  Google Scholar 

  7. Mathias S, Younes A, Kan C-C, Orlow I, Joseph C, Kolesnick RN. Activation of the Sphingomyelin signalling pathway in intact EL4 cells and in a cell-free system by IL-lβ. Science 259:519–522, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Fry MJ, Panayotou G, Booker GW, Waterfield MD. New insights into protein-tyrosine kinase receptor signalling complexes. Protein Sci 2:1785–1797, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Panayotou G, Waterfield MD. The assembly of signalling complexes by receptor tyrosine kinases. BioEssays 15:171–177, 1993.

    CAS  Google Scholar 

  10. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260:315–319, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. McCormick F. How receptors turn Ras on. Nature 363:15–17, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Berra E, Diaz-Meco MT, Dominguez I, Municio MM, Sanz L, Lozano J, Chapkin RS, Moscat J. Protein kinase C ζ isoform is critical for mitogenic signal transduction. Cell 74:555–563, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Dawson T, Bond J, Eccles N, Wynford-Thomas D. Toxicity of phorbol esters for human epithelial cells expressing a mutant ras oncogene. Mol Carcinog 8:280–289, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Clemens MJ, Trayner I, Menaya J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci 103:881–887, 1992.

    PubMed  CAS  Google Scholar 

  15. Ryves WJ, Evans AT, Olivier AR, Parker PJ, Evans FJ. Activation of the PKC-isotypes a, β1, γ, δ and ε by phorbol esters of different biological activities. FEBS Lett 288:5–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Wilkinson SE, Hallam TJ. Protein kinase C: is its pivotal role in cellular activation overstated? TIBS 15:53–62, 1994.

    CAS  Google Scholar 

  17. Jalava A, Lintunen M, Heikkila J. Protein kinase C-α but not protein kinase C-ε is differentially down-regulated by bryostatin 1 and tetradecanoyl phorbol 13-acetate in SH-SY5Y human neuroblastoma cells. Biochem Biophys Res Commun 191:472–478, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Posada JA, McKeegan EM, Worthington KF, et al. Human multidrug resistant KB cells overexpress protein kinase C: involvement in drug resistance. Cancer Commun 1:285–292, 1989.

    PubMed  CAS  Google Scholar 

  19. Yu G, Ahmad S, Aquino A, et al. Transfection with protein kinase C confers increased multidrug resistance to MCF-7 cells expressing P-glycoprotein. Cancer Commun 3:181–189, 1991.

    PubMed  CAS  Google Scholar 

  20. Blobe GC, Sachs CW, Khan WA, et al. Selective regulation of expression of protein kinase C (PKC) isoenzymes in multidrug-resistant MCF-7 cells. J Biol Chem 268:658–664, 1993.

    PubMed  CAS  Google Scholar 

  21. Schwartz GK, Jiang J, Kelsen D, Albino AP. Protein kinase C: a novel target for inhibiting gastric cancer cell invasion. J Natl Cancer Inst 85:402–407, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Chida K, Kato N, Yamada S, Kuroki T. Protein kinase C activities and bindings of a phorbol ester tumour promoter in 41 cell lines. Biochem Biophys Res Commun 157:1–8, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Borner C, Filipuzzi I, Weinstein IB, Imber R. Failure of wild-type or a mutant form of protein kinase C-a to transform fibroblasts. Nature 353:78–80, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Mischak H, Goodnight J, Kolch W, et al. Overexpression of protein kinase C-δ and-ε in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumourigenicity. J Biol Chem 268: 6090–6096, 1993.

    Google Scholar 

  25. Cacace AM, Guadagno SN, Krauss RS, Fabbro D, Weinstein IB. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibrioblasts. Oncogene 8:2095–2104, 1993.

    PubMed  CAS  Google Scholar 

  26. Kekule AS, Lauer U, Weiss L, Luber B, Hans Hofschneider P. Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361:742–743, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Beckwith M, Longo DL, O’Connell CD, Moratz CM, Urba WJ. Phorbol ester induced, cell-cycle-specific, growth inhibition of human B-lymphoma cell lines. J Natl Cancer Inst 82:501–509, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Dale IL, Gescher A. Effects of activators of protein kinase C, including bryostatins 1 and 2, on the growth of A549 human lung carcinoma cells. Int J Cancer 43:158–163, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Meyer T, Regenass U, Fabbro D, et al. A derivative of stuarosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumour activity. Int J Cancer 43:851–856, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Angel P, Baumann I, Stein B, Elius H, Rahmsdorf HJ, Herrlich P. 12-O-Tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5’-flanking region. Mol Cell Biol 7:2256–2266, 1987.

    PubMed  CAS  Google Scholar 

  31. Scotto L, Vaduva PI, Water RE, Assoian RK. Type βl transforming growth factor gene expression. J Biol Chem 265:2203–2208, 1990.

    PubMed  CAS  Google Scholar 

  32. Hanemaaijer R, Koolwijk P, LeClercq L, DeVree WJA, van Hinsbergh VWM. Regulation of matrix metalloproteinase expression in vein and microvascular endothelial cells.Biochem J 296:803–809, 1993.

    PubMed  CAS  Google Scholar 

  33. Presta M, Tiberio L, Rusnati M, Dell’Era P, Ragnotti G. Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation 2:719–726, 1991.

    PubMed  CAS  Google Scholar 

  34. Zhou W, Takuwa N, Kumada M, Takuwa Y. Protein kinase C-mediated bidirectional regulation of DNA synthesis, RB protein phosphorylation, and cyclin-dependent kinases in human vascular endothelial cells. J Biol Chem 268:23041–23048, 1993.

    PubMed  CAS  Google Scholar 

  35. Guerrin M, Prats H, Mazars P, Valette A. Antiproliferative effect of phorbol esters on MCF-7 human breast adenocarcinoma cells: relationship with enhanced expression of transforming growth factor βl. Biochem Biophys Acta 1137:116–120, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Nutt JE, Harris AL, Lunec J. Phorbol ester and bryostatin effects on growth and the expression of oestrogen responsive and TGF-βl genes in breast tumour cells. Br J Cancer 64:671–676, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Issandou M, Bayard F, Darbon J-M. Inhibition of MCF-7 cell growth by 12-O-tetradecanoylphorbol-13-acetate and 1,2-dioctanoyl-sn-glycerol: distinct effects on protein kinase-C activity. Cancer Res 48:6943–6950, 1988.

    PubMed  CAS  Google Scholar 

  38. Kennedy MJ, Prestigiacomo LJ, Tyler G, May WS, Davidson NE. Differential effects of bryostatin 1 and phorbol ester on human breast cancer cell lines. Cancer Res 52:1278–1283, 1992.

    PubMed  CAS  Google Scholar 

  39. Corbett AH, Fernald AW, Osheroff N. Protein kinase-C modulates the catalytic activity of topoisomerase II by enhancing the rate of ATP hydrolysis — evidence for a common mechanism of regulation by phosphorylation. Biochemistry 32:2090–2097, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42(3):155–199,1990.

    PubMed  CAS  Google Scholar 

  41. Beck WT. The cell biology of multiple drug resistance. Biochem Pharmacol 36:2879–2887, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Hamada H, Tsuruo T. Characterization of the ATP-ase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cell. Cancer Res 48:4926–4932, 1988.

    PubMed  CAS  Google Scholar 

  43. O’Brian CA, Ward NE. Biology of the protein kinase C family. Cancer Metastasis Rev 8:199–214, 1989.

    Article  PubMed  Google Scholar 

  44. Chambers TC, McAvoy EM, Jacobs JW, Eilon G. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem 265:7679–7686, 1990.

    PubMed  CAS  Google Scholar 

  45. Efferth T, Volm M. Expression of protein kinase C in human renal cell carcinoma cells with inherent resistance to doxorubicin. Anticancer Res 12:2209–2212, 1992.

    PubMed  CAS  Google Scholar 

  46. Tritton TR. Cell surface actions of adriamycin. Pharmacol Ther 49:293–309, 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Ward NE, O’Brian CA. Distinct patterns of phorbol ester-induced downregulation of protein kinase C activity in adriamycin-selected multidrug resistant and parental murine fibrosarcoma cells. Cancer Lett 58(3):189–193, 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Ahmad S, Glazer R. Expression of the antisense cDNA for protein kinase C attenuates resistance in doxorubicin-resistant MCF-7 breast carcinoma cells. Mol Pharmacol 43: 858–862, 1993.

    Google Scholar 

  49. Chambers TC, Zheng B, Kuo JF. Regulation of phorbol ester and protein kinase C inhibitors, and by a protein phosphatase inhibitor (okadaic acid), of P-glycoprotein phosphorylation and relationship to drug accumulation in multidrug-resistant human KB cells. Mol Pharmacol 41:1008–1015, 1992.

    PubMed  CAS  Google Scholar 

  50. Aftab DT. Development of an assay and inhibitors of protein kinase C, and studies on the role of the enzyme in the phosphorylation of P-glycoprotein. Diss Abstr Int 53:5656, 1993.

    Google Scholar 

  51. Fan D, Fidler J, Ward NE, et al. Stable expression of a cDNA rat brain protein kinase C-βl confers a multidrug-resistant phenotype on rat fibroblasts. Anticancer Res 12:661–668, 1992.

    PubMed  CAS  Google Scholar 

  52. Lee SA, Karaszkiewicz JW, Anderson WB. Elevated level of nuclear protein kinase C in multidrug-resistant MCF-7 human breast carcinoma cells. Cancer Res 52:3750–3759, 1992.

    PubMed  CAS  Google Scholar 

  53. Aquino A, Warren BS, Omichiamyki J, Hartman KD, Glazer RI. Protein Kinase C-gamma is present in adriamycin resistant HL-60 leukemia cells. Biochem Biophys Res Commun 166(2): 723–728, 1990.

    Google Scholar 

  54. Ahmad S, Trepel JB, Ohno S, et al. Role of protein kinase C in the modulation of multidrug resistance: expression of the atypical gamma isoform of protein kinase C does not confer increased resistance to doxorubicin. Mol Pharmacol 42:1004–1009, 1992.

    PubMed  CAS  Google Scholar 

  55. Gollapudi S, Patel K, Jain V, Gupta S. Protein kinase C isoforms in multidrug resistant P388/ADR cells: a possible role in daunorubicin transport. Cancer Lett 62:69–75, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Chaudhary PM, Roninson IB. Activation of MDRI (P-glycoprotein) gene expression in human cells by protein kinase C agonists. Oncol Res 4:281–290, 1992.

    PubMed  CAS  Google Scholar 

  57. Sato W, Yusa K, Naito M, et al. Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrug-resistant cells. Biochem Biophys Res Commun 173:1252–1257, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. De Petrillo PB, Abernethy DR, Wainer IW, Andrawis NS. Verapamil decreases lymphocyte protein kinase C activity in humans. Clin Pharmacol Ther 55:44–49, 1994.

    Article  Google Scholar 

  59. O’Brianetal., 1991.

    Google Scholar 

  60. Barsoum J, Varshavsky A. Mitogenic hormones and tumour promoters greatly increase the incidence of colony-forming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci USA 80:5330–5334, 1983.

    Article  PubMed  CAS  Google Scholar 

  61. Basu A, Teicher BA, Lazo JS. Involvement of protein kinase C in phorbol ester-induced sensitization of HeLa cells to cis-diamminedichloroplatinum (II). J Biol Chem 265: 8451–8457, 1990.

    Google Scholar 

  62. Hoffman J, Doppler W, Jakob A, et al. Enhancement of the antiproliferative effect of cisdiamminedichlorplatinum (II) and nitrogen mustard by inhibitors of protein kinase C. Int J Cancer 42:382–388, 1988.

    Article  Google Scholar 

  63. Isonishi S, Horn DK, Eastman A, Howell SB. Enhancement of sensitivity to platinum(II)-containing drugs by 12-O-tetradecanoyl-phorbol-l3-acetate in a human ovarian carcinoma cell line. Br J Cancer 69:217–221, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Tokui T, Inagaki M, Nishizawa K, et al. Inactivation of DNA polymerase beta by in vitro phosphorylation with protein kinase C. J Biol Chem 266:10820–10824, 1991.

    PubMed  CAS  Google Scholar 

  65. Hallahan DE, Virudachalam S, Sherman ML, et al. Tumour necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation. Cancer Res 51:4565–4569, 1991.

    PubMed  CAS  Google Scholar 

  66. Woloschak et al.,1990.

    Google Scholar 

  67. Peak JG, Woloschak GE, Peak MJ. Enhanced expression of protein kinase C gene caused by solar radiation. Photochem Photobiol 53(3):395–397, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Matsui MS, DeLeo VA. Longware Ultraviolet radiation and promotion of skin cancer. Cancer Cells 31:8–12, 1991.

    Google Scholar 

  69. Sachsenmaier C, Radler-Pohl A, Muller A, et al. Damage to DNA by UV light and activation of transcription factors. Biochem Pharmacol 47:129–136, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. Borek C, Ong A, Stevens VL, Wang E, Merrill AH Jr. Long-chain (sphingoid) bases inhibit multistage carcinogenesis in mouse C3H/10T1/2 cells treated with radiation and phorbol 12-myristate 13-acetate. Proc Natl Acad Sci USA 88(5): 1953–1957, 1991.

    Article  Google Scholar 

  71. Kim CY, Giaccia AJ, Strulovici B, Brown JM. Differential expression of proten kinase C epsilon protein in lung cancer cell lines by ionising radiation. Br J Cancer 66(5):844–849, 1992.

    Article  PubMed  CAS  Google Scholar 

  72. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 76: 263–274, 1994.

    Google Scholar 

  73. Isakov N, Mally MI, Scholz W, Altman A. T-lymphocyte activation: the role of protein kinase C and the bifurcating inositol phospholipid signal transduction pathway. Immunol Rev 95:89–111, 1987.

    Article  PubMed  CAS  Google Scholar 

  74. Kozumbo WJ, Harris DT, Gromkowski S, Cerottini JC, Cerutti PA. Molecular mechanisms involved in T cell activation. II. The phosphatidylinositol signal-transducing mechanism mediates antigen-induced lymphokine production but not interleukin 2-induced proliferation in cloned cytotoxic T lymphocytes. J Immunol 138(2):606–612, 1987.

    PubMed  CAS  Google Scholar 

  75. Imboden JB, Stobo JD. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med 161(3):446–456, 1985.

    Article  PubMed  CAS  Google Scholar 

  76. Waldmann, 1986. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science 232:727–732, 1986.

    Google Scholar 

  77. Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 243:355–361, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Berry N, Nishizuka Y. Protein kinase C and T cell activation. Eur J Biochem 189:205–214, 1990.

    Article  PubMed  CAS  Google Scholar 

  79. Farrar WL, Ruscetti FW. Association of protein kinase C activation with IL 2 receptor expression. J Immunol 136:1266–1273, 1986.

    PubMed  CAS  Google Scholar 

  80. Valge VE, Wong JGP, Datlof BM, et al. Protein kinase C is required for responses to T cell receptor ligands but not to interleukin-2 in T cells. Cell 55:101–112, 1988.

    Article  PubMed  CAS  Google Scholar 

  81. Jain J, Valge-Archer VE, Sinskey AJ, Rao A. The AP-1 site at-150bp, but not the NF-KB site, is likely to represent the major target of protein kinase C in the interleukin-2 promoter. J Exp Med 175:853–862, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Modiano JF, Kolp R, Lamb RJ, Nowell PC. Protein kinase C regulates both production and secretion of interleukin-2. J Biol Chem 266:10552–10561, 1991.

    PubMed  CAS  Google Scholar 

  83. Depper JM, Leonard WJ, Kronke M, et al. Regulation of interleukin 2 receptor expression: effects of phorbol diester, phospholipase C, and re-exposure to lectin or antigen. J Immunol 133:3054–3061,1984.

    PubMed  CAS  Google Scholar 

  84. Iwamoto T, Hagiwara M, Hidaka H, et al. Accelerated proliferation and interleukin-2 production of thymocytes by stimulation of soluble anti-CD3 monoclonal antibody in transgenic mice carrying a rabbit protein kinase C. J Biol Chem 267:18644–18648, 1992.

    PubMed  CAS  Google Scholar 

  85. Szamel M, Kracht M, Krebs B, Hubner U, Resch K. Activation signals in human lymphocytes: interleukin-2 synthesis and expression of high affinity interleukin-2 receptors require differential signalling for the activation of protein kinase C. Cell Immunol 126: 117–128, 1990.

    Google Scholar 

  86. McCrady CW, Angus FL, Grant AJ, et al. Alteration of human lymphokine-activated killer cell activity by manipulation of protein kinase C and cytosolic Ca2+. Cancer Res 48:635–640, 1988.

    PubMed  CAS  Google Scholar 

  87. Chung Y, Kwon J, Benveniste EN. Role of protein kinase C activity in tumour necrosis factor-a gene expression. J Immunol 149:3894–3902, 1992.

    PubMed  CAS  Google Scholar 

  88. Bethea JR, Gillespie GY, Benveniste EN. Interleukin-1 Beta induction of TNF-a gene expression: involvement of protein kinase C. J Cell Physiol 152:264–273, 1992.

    Article  PubMed  CAS  Google Scholar 

  89. Gescher A, Dale IL. Protein kinase C — a novel target for rational anti-cancer drug design? Anti-Cancer Drug Design 4:93–105, 1989.

    PubMed  CAS  Google Scholar 

  90. Grunicke HH, Uberall F. Protein kinase C modulation. Semin Cancer Biol 3:351–360, 1992.

    PubMed  CAS  Google Scholar 

  91. Tamaoki T, Nomoto H, Takahashi I, et al. Staurosporine, a potent inhibitor of phospho-lipid/Ca2+-dependent protein kinase. Biochem Biophys Res Commun 135:397–402, 1986.

    Article  PubMed  CAS  Google Scholar 

  92. Gschwendt M, Horn F, Kittstein W, Marks F. Inhibition of the calcium and phospholipid-dependent protein kinase activity from mouse brain cytosol by quercetin. Biochem Biophys Res Commun 117:444–447, 1983.

    Article  PubMed  CAS  Google Scholar 

  93. Gescher A. Towards selective pharmacological modulation of protein kinase C #X2014; opportunities for the development of novel antineoplastic agents. Br J Cancer 66:10–19, 1992.

    Article  PubMed  CAS  Google Scholar 

  94. Nixon JS, Bishop J, Bradshaw D, et al. The design and biological properties of potent and selective inhibitors of protein kinase C. Biochem Soc Trans 20:419–425, 1992.

    PubMed  CAS  Google Scholar 

  95. Wakusawa S, Nakamura S, Tajima K, et al. Overcoming of vinblastine resistance by isoquinolinesulfonamide compounds in adriamycin-resistant leukemia cells. Mol Pharmacol 41:1034–1038, 1992.

    PubMed  CAS  Google Scholar 

  96. Ruegg UT, Burgess GM. Staurosporine, K-252 and UCN-01: Potent but non-specific inhibitors of protein kinases. TIBS 10:218–220, 1989.

    CAS  Google Scholar 

  97. Takahashi I, Saitoh Y, Yoshida M, et al. UCN-01 and UCN-02, new selective inhibitors of protein kinase C. II. Purification, physiochemical properties, structural determinations, and biological activities. J Antibiot (Tokyo) 42:571–576, 1989.

    Article  CAS  Google Scholar 

  98. Akinaga S, Gomi K, Morimoto M, et al. Antitumour activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumour models. Cancer Res 51:4888–4892, 1991.

    PubMed  CAS  Google Scholar 

  99. Akinaga S, Nomura K, Gomi K, Okabe M. Effect of UCN-01, a selective inhibitor of protein kinase C, on the cell-cycle distribution of human epidermoid carcinoma, A431 cells. Cancer Chemother Pharmacol 33:273–280, 1994.

    Article  PubMed  CAS  Google Scholar 

  100. Tamaoki T, Nakano H. Potent and specific inhibitors of protein kinase C of microbial origin. Biotechnology 8:732–735, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Davis PD, Hill CH, Keech E, et al. Potent selective inhibitors of protein kinase C. FEBS Lett 259:61–63, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Dieter P, Fitzke E. RO 31-8220 and RO 31-7549 show improved selectivity for protein kinase C over staurosporine in macrophages. Biochem Biophys Res Commun 181: 396–401, 1991.

    Google Scholar 

  103. Toullec D, Pianetti P, Coste H, et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781, 1991.

    PubMed  CAS  Google Scholar 

  104. Kulanthaivel P, Hallock YF, Boros C, et al. Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J Am Chem Soc 115:6452–6453, 1993.

    Article  CAS  Google Scholar 

  105. Zhao FK, Chuang LF, Israel M, Chuang RY. Adriamycin interacts with diacylglycerol to inhibit human leukemia protein kinase C. Anticancer Res 9:225–229, 1989.

    PubMed  CAS  Google Scholar 

  106. Mahoney CW, Azzi A, Huang K-P. Effects of suramin, an anti-human immunodeficiency virus reverse transcriptase agent, on protein kinase C. J Biol Chem 265:5424–5428, 1990.

    PubMed  CAS  Google Scholar 

  107. Hannun YA, Bell RM, Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507, 1989.

    Article  PubMed  CAS  Google Scholar 

  108. Adams LM, Cofield DJ, Seldin JC, et al. Effect of the protein kinase C (PKC) inhibitor SPC-100270 on drug accumulation and cytotoxicity in drug resistant and sensitive tumour cells in vitro. Proc AACR 34:410, A2447, 1993.

    Google Scholar 

  109. Adams LM, Dykes D, Harrison SD, et al. Combined effect of the chemopotentiator SPC-100270, a protein kinase C (PKC) inhibitor, and doxorubicin (Dox) or cisplatin (Cis) on murine isografts and human tumour xenografts. Proc AACR 34:410, A2448, 1993.

    Google Scholar 

  110. Adams LM, Snyder DJ, Harrison SD. The protein kinase C (PKC) inhibitor SPC-100270 inhibits experimental metastasis and potentiates doxorubicin (dox) chemotherapy in B16F1 melanoma. Proc AACR 34:410, A2446, 1993.

    Google Scholar 

  111. Susick RL, Bozigian HP, Kurtzberg J, et al. Combination toxicology studies with the chemo-penetrating agent SPC-100270 (a PKC inhibitor) and chemotherapeutic agents. Proc AACR 34:410, A2444, 1993.

    Google Scholar 

  112. O’Brian CA, Liskamp RM, Solomon DH, et al. Inhibition of protein kinase C by tamoxifen. Cancer Res 45:2462–2465, 1985.

    PubMed  Google Scholar 

  113. Reddet RR, Murphy LC, Sutherland RL. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res 43:4618–4624, 1983.

    Google Scholar 

  114. Pettit GR, Day JF, Hartwell JL, Wood HB. Antineoplastic components of marine animals. Nature 227:962–963, 1970.

    Article  PubMed  CAS  Google Scholar 

  115. Pettit GR, Herald CL, Doubek DL, et al. Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848, 1982.

    Article  CAS  Google Scholar 

  116. Schaufelberger DE, Koleck MP, Beutler JA, et al. The large-scale isolation of bryostatin 1 from bugula neritina following current good manufacturing practices. J Nat Prod 54: 1265–1270, 1991.

    Google Scholar 

  117. De Vries DJ, Herald CL, Pettit GR, Blumberg PM. Demonstration of subnanomolar affinity of bryostatin 1 for the phorbol ester receptor in rat brain. Biochem Pharmacol 37:4069–4073, 1988.

    Article  PubMed  Google Scholar 

  118. Gschwendt M, Furstenberger G, Rose-John S, et al. Bryostatin 1, an activator of protein kinase C, mimics as well as inhibits biological effects of the phorbol ester TPA in vivo and in vitro. Carcinogenesis 9:555–562, 1988.

    Article  PubMed  CAS  Google Scholar 

  119. Sako T, Yuspa SH, Herald CL, Pettit GR, Blumberg PM. Partial parallelism and partial blockade by bryostatin 1 of effects of phorbol ester tumour promoters on primary mouse epidermal cells. Cancer Res 47:5445–5450, 1987.

    PubMed  CAS  Google Scholar 

  120. Hennings H, Blumberg PM, Pettit GR, Herald CL, Shores R, Yuspa SH. Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis 8(9): 1343–1346, 1987.

    Google Scholar 

  121. Fields AP, Pettit GR, May WS. Phosphorylation of laminin B at the nuclear membrane by activated protein kinase C. J Biol Chem 263:8253–8260, 1988.

    PubMed  CAS  Google Scholar 

  122. Hocevar BA, Fields AP. Selective translocation of βII-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 266:28–33, 1991.

    PubMed  CAS  Google Scholar 

  123. Dell#X2019;Aquila ML, Nguyen HT, et al. Inhibition by bryostatin 1 of the phorbol ester-induced blockage of differentiation in hexamethylene bisacetamide-treated Friend erythroleukemia cells. Cancer Res 47:6006–6009, 1987.

    PubMed  Google Scholar 

  124. Pasti G, Rivedal E, Yuspa SH, et al. Contrasting duration of inhibition of cell-cell communication in primary mouse epidermal cells by phorbol 12,13-dibutyrate and by bryostatin 1. Cancer Res 48:447–415, 1988.

    PubMed  CAS  Google Scholar 

  125. Szallasi Z, Smith CB, Pettit GR, et al. Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. J Biol Chem 269:2118–2124, 1994.

    PubMed  CAS  Google Scholar 

  126. Stanwell C, Gescher A, Bradshaw TD, Pettit GR. The role of protein kinase C isoenzymes in the growth inhibition caused by bryostatin 1 in human A549 lung and MCF-7 breast carcinoma cells. Int J Cancer 56:585–592, 1994.

    Article  PubMed  CAS  Google Scholar 

  127. Jones RJ, Sharkis SJ, Miller CB, et al. Bryostatin 1, a unique biologic response modifier: anti-leukemic activity in vitro. Blood 75:1319–1323, 1990.

    PubMed  CAS  Google Scholar 

  128. Hornung RL, Pearson JW, Beckwith M, Longo DL. Preclinical evaluation of bryostatin as an anticancer agent against several murine tumour cell lines: in vitro versus in vivo activity. Cancer Res 52:101–107, 1992.

    PubMed  CAS  Google Scholar 

  129. Schuchter LM, Esa AH, May WS, et al. Successful treatment of murine melanoma with bryostatin 1. Cancer Res 51:682–687, 1991.

    PubMed  CAS  Google Scholar 

  130. Drexler HG, Gignac SM, Jones RA, et al. Bryostatin 1 induces differentiation of B-chronic lymphocytic leukemia cells. Blood 74:1747–1757, 1989.

    PubMed  CAS  Google Scholar 

  131. Steube KG, Drexler HG. Differentiation and growth modulation of myeloid leukemia cells by the protein kinase C activating agent bryostatin 1. Leuk Lymphoma 9:141–148, 1993.

    Article  PubMed  CAS  Google Scholar 

  132. Grant S, Boise L, Westin E, et al. In vitro effects of bryostatin 1 on the metabolism and cytotoxcity of 1-β-D-arabinofuranosylcytosine in human leukemia cells. Biochem Pharmacol 42:853–867, 1991.

    Article  PubMed  CAS  Google Scholar 

  133. Grant S, Jarvis WD, Turner AJ, et al. Effects of bryostatin 1 and rGM-CSF on the metabolism of 1-β-D-arabinofuranosylcytosine in human leukemic myeloblasts. Br J Haematol 82:522–528, 1992.

    Article  PubMed  CAS  Google Scholar 

  134. Grant S, Jarvis WD, Swerdlow PS, et al. Potentiation of the activity of 1-b-D-arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL-60 cells: association with enhanced fragmentation of mature DNA. Cancer Res 52:6270–6278, 1992.

    PubMed  CAS  Google Scholar 

  135. Jarvis WD, Povirk LF, Turner AJ, et al. Effects of bryostatin 1 and other pharmocological activators of protein kinase C on l-[β-D-arabino furanosyl] cytosine-induced apoptosis in HL-60 human promyelocytic leukemia cells. Biochem Pharmacol 47:839–852, 1994.

    Article  PubMed  CAS  Google Scholar 

  136. Lilly M, Tompkins C, Brown C, Pettit G, Kraft A. Differentiation and growth modulation of chronic myelogenous leukemia cells by bryostatin. Cancer Res 50:5520–5525, 1990.

    PubMed  CAS  Google Scholar 

  137. Al-Katib A, Mohammad RM, Khan K, et al. Bryostatin 1-induced modulation of the acute lymphoblastic leukemia cell line Reh. J Immunother 14:33–42, 1993.

    Article  CAS  Google Scholar 

  138. Al-Katib A, Mohammad RM, Mohamed AN, et al. Conversion of high grade lymphoma tumour cell line to intermediate grade with TPA and bryostatin 1 as determined by polypeptide analysis on 2D gel electrophoresis. Hematol Oncol 8:81–89, 1990.

    Article  PubMed  CAS  Google Scholar 

  139. Mohammad RM, Al-Katib A, Pettit GR, Sensenbrenner LL. Successful treatment of human Waldenstrom’s macroglobulinaemia with combination biological and chemotherapy agents. Cancer Res 54:165–168, 1994.

    PubMed  CAS  Google Scholar 

  140. Hess AD, Silanskis MK, Esa AH, et al. Activation of human T lymphocytes by bryostatin. J Immunol 141:3263–3269, 1988.

    PubMed  CAS  Google Scholar 

  141. Esa AH, Boto WO, Adler WH, et al. Activation of T-cells by bryostatins: induction of the IL-2 receptor gene transcription and down-modulation of surface receptors. Int J Immunopharmacol 12:481–490, 1990.

    Article  PubMed  CAS  Google Scholar 

  142. Lilly M, Brown C, Pettit G, Kraft A. Bryostatin 1: a potential anti-leukemic agent for chronic myelomonocytic leukemia. Leukemia 5:283–287, 1991.

    PubMed  CAS  Google Scholar 

  143. Trenn G, Pettit GR, Takayama H, et al. Immunomodulating properties of a novel series of protein kinase C activators. J Immunol 140:433–439, 1988.

    PubMed  CAS  Google Scholar 

  144. Tuttle TM, Bethke KP, Inge TH, et al. Bryostatin 1-activated T cells can traffic and mediate tumour regression. J Surg Res 52:543–548, 1992.

    Article  PubMed  CAS  Google Scholar 

  145. Leonard JP, May WS, Ihle JN, Pettit GR, Sharkis SJ. Regulation of hematopoiesis IV: the role of interleukin-3 and bryostatin 1 in the growth of erythropoietic progenitors from normal and anaemic WAV mice. Blood 72:1492–1496, 1988.

    PubMed  CAS  Google Scholar 

  146. May WS, Sharkis SJ, Esa AH, et al. Antineoplastic bryostatins are multipotential stimulators of human hematopoietic progenitor cells. Proc Natl Acad Sci USA 84:8483–8487, 1987.

    Article  PubMed  CAS  Google Scholar 

  147. Sharkis SJ, Jones RJ, Bellis ML, et al. The action of bryostatin on normal human hematopoietic progenitors is mediated by accessory cell release of growth factors. Blood 76:716–720, 1990.

    PubMed  CAS  Google Scholar 

  148. McCrady CW, Staniswalis J, Pettit GR, Howe CWS, Grant S. Effect of pharmacologic manipulation of protein kinase C by phorbol dibutyrate and bryostatin 1 on the clonogenic response of human granulocyte-macrophage progenitors to recombinant GM-CSF. Br J Haematol 77:5–15, 1991.

    Article  PubMed  CAS  Google Scholar 

  149. Heyworth CM, Dexter TM, Nicholls SE, Whetton AD. Protein kinase C activators can interact synergistically with granulocyte colony-stimulating factor or interleukin-6 to stimulate colony formation from enriched granulocyte-macrophage colony-forming cells. Blood 81:894–900, 1993.

    PubMed  CAS  Google Scholar 

  150. Berkow RL, Kraft AS. Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochem Biophys Res Commun 131:1109–1116, 1985.

    Article  PubMed  CAS  Google Scholar 

  151. Berkow RL, Schlabach L, Dodson R, et al. In vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity. Cancer Res 53:2810–2815, 1993.

    PubMed  CAS  Google Scholar 

  152. Basu A, Lazo JS. Sensitization of human cervical carcinoma cells to cis-diamminedichlo-roplatinum(II) by bryostatin 1. Cancer Res 52:3119–3124, 1992.

    PubMed  CAS  Google Scholar 

  153. Philip PA, Rea D, Thavasu P, et al. Phase I study of bryostatin 1: assessment of interleukin-6 and tumour necrosis factor a induction in vivo. J Natl Cancer Inst 85:1812–1818, 1993.

    Article  PubMed  CAS  Google Scholar 

  154. Prendiville J, Crowther D, Thatcher N, et al. A phase I study of intravenous bryostatin 1 in patients with advanced cancer. Br J Cancer 68:418–424, 1993.

    Article  PubMed  CAS  Google Scholar 

  155. Salvatori S, Furlan S, Millikin B, Sabbadini R, Betto R, Margreth A, Salviati G. Localisation of protein kinase C in skeletal muscle T-tubule membranes. Biochem Biophys Res Commun 196:1073–1080, 1993.

    Article  PubMed  CAS  Google Scholar 

  156. Briggs JC, Haines AH, Taylor RJK, et al. Synthesis of diacylglycerol analogues as potential second-messenger antagonists and inhibitors of protein kinase C. Carbohydrate Res 234:23–35, 1992.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Philip, P.A., Harris, A.L. (1995). Potential for protein kinase C inhibitors in cancer therapy. In: Muggia, F.M. (eds) Concepts, Mechanisms, and New Targets for Chemotherapy. Cancer Treatment and Research, vol 78. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2007-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2007-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5829-9

  • Online ISBN: 978-1-4615-2007-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics