Skip to main content

A Two-Layer Model for the Laser Generation of Ultrasound in Graphite-Epoxy Laminates

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

We previously reported the performances of a numerical simulation model [1] that calculates the mechanical displacements induced within a sample by the absorption of a laser pulse. This model solves the heat diffusion and acoustic wave propagation equations over an orthotropic slab of finite thickness with the help of temporal Laplace and spatial 2D Fourier transformations. The parallel and normal displacements predicted by the model were found to be in generally very good agreement with experimental data obtained on various samples in various excitation conditions. Among these experiments, one consisted in the CO2 laser excitation of a graphite-epoxy sample. We performed an optical study of the graphite-epoxy composite using FTIR photoacoustic spectroscopy [2] to determine the optical penetration depth spectrum of this material. This study revealed that a thin (≈ 30 μm thick) epoxy layer covered the top graphite fiber sheet of the composite, and that the optical penetration depth of the CO2 radiation in the epoxy was about 20 μm. Consequently, when a CO2 laser pulse impinges on the composite, all the radiation is absorbed in the epoxy layer, and it is easy to simulate this situation with the model, using the rigidity-expansion tensor [λ] of the epoxy for the generation and the rigidity tensor [C] of the composite for the propagation (see [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Dubois, F. Enguehard, M. Choquet, J.-P. Monchalin and L. Bertrand, in Review of Progress in QNDE, Vol. 13, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York, 1994), p. 1023.

    Google Scholar 

  2. M. Dubois, F. Enguehard, M. Choquet, J.-P. Monchalin and L. Bertrand, in Review of Progress in QNDE, Vol. 13, eds. D. O. Thompson and D. E. Chimenti (Plenum, New York, 1994), p. 441.

    Google Scholar 

  3. L. S. Gournay, J. Acoust. Soc. Am. 40(6), 1322 (1966).

    Article  Google Scholar 

  4. J. C. Bushnell and D. J. McCloskey, J. Appl. Phys. 39 (12), 5541 (1968).

    Article  Google Scholar 

  5. R. J. Von Gutfeld and R. L. Merlcher, Appl. Phys. Lett. 30(6), 257 (1977).

    Article  Google Scholar 

  6. R. J. Dewhurst, D. A. Hutchins, S. B. Palmer and C. B. Scruby, J. Appl. Phys. 53(6), 4064 (1982).

    Article  Google Scholar 

  7. D. A. Hutchins, R. J. Dewhurst and S. B. Palmer, Ultrasonics 19(3), 103 (1981).

    Article  Google Scholar 

  8. E. F. Carome, N. A. Clark and C. E. Moeller, Appl. Phys. Lett. 4(6), 95 (1964).

    Article  Google Scholar 

  9. M. P. Felix, Rev. Sci. Instrum. 45(9), 1106 (1974).

    Article  Google Scholar 

  10. G. C. Wetsel, IEEE Transactions UFFC 33(5), 450 (1986).

    Article  Google Scholar 

  11. C. Thomsen, H. T. Grahn, H. J. Marris and J. Tauc, Phys. Rev. B 34(6), 4129 (1986).

    Article  Google Scholar 

  12. Z. Bozoki, A. Miklos, C. Glorieux, J. Thoen and D. Bicanic, Journal de Physique (1994), to be published.

    Google Scholar 

  13. B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1, R. E. Krieger Publishing Company (Malabar, Florida, 1990).

    Google Scholar 

  14. J.-P. Monchalin, J.-D. Aussel, R. Héon, C. K. Jen, A. Boudreault and R. Bernier, J. Nondestruct. Eval. 8(2), 121 (1989).

    Article  Google Scholar 

  15. M. Dubois, F. Enguehard and L. Bertrand, Phys. Rev. E 50(2) (1994), to be published.

    Google Scholar 

  16. M. Dubois, F. Enguehard, M. Choquet, J.-P. Monchalin and L. Bertrand, Journal de Physique (1994), to be published.

    Google Scholar 

  17. Engineering Materials Handbook, Vol. 1: Composites, and Engineering Materials Handbook, Vol. 2: Engineering Plastics, ASM International (USA, 1988).

    Google Scholar 

  18. C. Corbel, F. Guillois, D. Royer, M. Fink and R. De Mol, IEEE Transactions UFFC 40(6), 710(1993).

    Article  Google Scholar 

  19. R. D. Kriz and W. W. Stinchcomb, Exp. Mech. 19, 41 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Dubois, M., Enguehard, F., Bertrand, L. (1995). A Two-Layer Model for the Laser Generation of Ultrasound in Graphite-Epoxy Laminates. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1987-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1987-4_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5819-0

  • Online ISBN: 978-1-4615-1987-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics