Skip to main content

Numerical Evaluation of the Reflection of Rayleigh Waves using a Weight Function Estimation Method

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

Theoretical analyses relating the reflection coefficient to crack sizes have been considered by many investigators. The general scattering models which describe the relative signal amplitude of an ultrasonic wave scattered from one transducer to another by a void of arbitrary shape or a distribution of cracks in an infinite homogenous isotropic solid have been developed [1–5]. A scattering model of Rayleigh waves from a planar distribution of surface breaking cracks has also been derived [6]. To evaluate the reflection coefficient using that model, the stress intensity factors (SIF) of the cracks under Rayleigh wave stress fields need to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.A. Auld, Wave Motion, vol. 1, 3–10, (1978).

    Article  Google Scholar 

  2. G.S. Kino, J. Appl. Phys., Vol. 49, No. 6, 3190–3199, (1978).

    Article  Google Scholar 

  3. Y.C. Angel, and J.D. Achenbach, J. Appl. Mech. 52:33 (1985).

    Article  MATH  Google Scholar 

  4. J.D. Achenbach and M. Kiitahara, J. Acoust. Soc. Am. 80:1209 (1986).

    Article  Google Scholar 

  5. J.D. Achenbach, From Ultrasonic to Failure Prevention, Elastic Waves and Ultrasonic Nondestructive Evaluation, (North-Holland, 1990), pp. 3-15.

    Google Scholar 

  6. A.S. Cheng, Ultrasonic Reflection by a Planar Distribution of Surface breaking Cracks, in Review of progress in QNDE, 1994.

    Google Scholar 

  7. J.C. Newman and I.S. Raju, NASA Technical Paper, No. 1578, (1979).

    Google Scholar 

  8. H.G. Bueckner, ZAMM, Vol. 50.9, pp. 529–546, (1970).

    MathSciNet  Google Scholar 

  9. J.R. Rice, International J. of Solids and Structure, Vol. 8, pp. 751–758, (1972).

    Article  MATH  Google Scholar 

  10. G.S. Wong, Engr. Fracture Mechanics, Vol. 41, No. 5, pp. 659–684, (1992).

    Article  Google Scholar 

  11. T. Fett, Engr. Fracture Mechanics, Vol. 34, No. 4, pp. 883–890, (1989).

    Article  Google Scholar 

  12. G.S. Wong, International J. of Fracture, Vol. 59, pp. 161–187, (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Cheng, A.S. (1995). Numerical Evaluation of the Reflection of Rayleigh Waves using a Weight Function Estimation Method. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1987-4_252

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1987-4_252

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5819-0

  • Online ISBN: 978-1-4615-1987-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics