Skip to main content

Short-Chain Dehydrogenases/Reductases

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 372))

Abstract

The family of short-chain dehydrogenases/reductases (SDR) with subunits of typically 250-odd amino acid residues now encompasses 57 different characterised proteins, representing a wide variety of enzyme activities. The first characterised member of this family was the fruit-fly alcohol dehydrogenase (Schwartz and Jörnvall, 1976; Thatcher, 1980). This alcohol dehydrogenase is different from the classical liver alcohol dehydrogenase, which has larger subunits of about 370 residues, is zinc-dependent, and belongs to a family of medium-chain dehydrogenases/reductases (MDR) (Jörnvall et al., 1981; Persson et al., 1994). In the early 80’s, two additional structures were shown to be related to the Drosophila alcohol dehydrogenase (Jörnvall et al., 1981, 1984), thus establishing a new enzyme family. These structures were glucose dehydrogenase (Jany et al., 1984) and ribitol dehydrogenase (Morris et al., 1974; Dothie et al., 1985). Already at this stage, it was seen that the molecular architecture was different between this short-chain dehydrogenase family and the medium-chain dehydrogenases. The coenzyme-binding region is located at the beginning of the C-terminal domain in the medium-chain dehydrogenases, with a classical Rossmann fold (Rossmann et al., 1975) and a conserved Gly-X-Gly-X-X-Gly pattern. In contrast, the short-chain dehydrogenases have a similar pattern of Gly-X-Gly-X-X-X-Gly at the N-terminal region. In addition, secondary structure predictions suggested this region to have a β-turn-α-turn-β motif, compatible with a Rossmann fold (Thatcher & Sawyer, 1980). Consequently, it was early clear that the two different families of dehydrogenases have different molecular architectures. The medium-chain dehydrogenases have an N-terminal, catalytic domain and a C-terminal, coenzyme-binding domain, while in the shortchain dehydrogenases the coenzyme-binding is located N-terminally and the catalytic site toward the C-terminal half of the molecule (Jörnvall et al., 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albalat, R., Gonzàlez-Duarte, R., and Atrian, S., 1992, Protein engineering of Drosophila alcohol dehydrogenase. Thy hydroxyl group of Tyr152 is involved in the active site of the enzyme, FEBS Lett. 308:235–239.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, N., Maxwell, M. M., St.-Jacques, B., and Brenner, B. M., 1993, Downregulation of Ke 6, a novel gene encoded within the major histocompatibility complex, in murine polycystic kidney disease, Mol. Cell. Biol. 13:1847–1853.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bairoch, A., and Boeckmann, B., 1992, The SWISS-PROT protein sequence data bank, Nucleic Acids Res. 20 Supplement:2019–2022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baron, S. F., Franklund, C. V., and Hylemon, P. B., 1991, submitted to the EMBL databank.

    Google Scholar 

  • Bauer, A. J., Rayment, I., Frey, P. A., and Holden, H. M., 1992, The molecular structure of UDP-galactose 4-epimerase from Escherichia coli determined at 2.5 Å resolution, Proteins 12:372–381.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, S., Galliano, H., Pfeiffer, F., Meßner, B., Sandermann, Jr, H., and Ernst, D., 1993, Isolation and characterization of a cDNA clone encoding a novel short-chain alcohol dehydrogenase from norway spruce (Picea abies L. Karst), Plant Physiol. 103:1479–1480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Callahan, H. L., and Beverley, S. M., 1992, A member of the aldoketo reductase family confers methotrexate resistance in Leishmania, J. Biol. Chem. 267:24165–24168.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Jiang, J. C., Lin, Z.-G., Lee, W. R., Baker, M. E., and Chang, S. H., 1993, Site specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis, Biochemistry 32:3342–3346.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, A., Calderon-Urrea, A., and Dellaporta, S. L. (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion, Cell 74:757–768.

    Article  CAS  PubMed  Google Scholar 

  • Dothie, J. M., Giglio, J. R., Moore, C. B., Taylor, S. S., and Hartley, B. S., 1985, Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains, Biochem. J. 230:569–578.

    CAS  PubMed  Google Scholar 

  • Ensor, C. M., and Tai, H.-H., 1991, Site-directed mutagenesis of the conserved tyrosine 151 of human placental NAD+-dependent 15-hydroxyprostaglandin dehydrogenase yields a catalytically inactive enzyme, Biochem. Biophys. Res. Commun. 176:840–845.

    Article  CAS  PubMed  Google Scholar 

  • Geissler, W. M., Davis, D. L., Wu, L., Bradshaw, K. D., Patel, S., Mendonca, B. B., Elliston, K. O., Wilson, J. D., Russell, D. W., and Andersson, S. (1994) Male pseudohermaphroditism caused by mutations of testicular 17β-hydroxysteroid dehydrogenase 3, Nature Genetics 7:34–39.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, D., Weeks, C. M., Grochulski, P., Duax, W L., Erman, M., Rimsay, R. L., and Orr, J. C., 1991, Three-dimensional structure of holo 3α,20β-hydroxysteroid dehydrogenase: A member of a shortchain dehydrogenase family, Proc. Natl Acad. Sci. 88:10064–10068.

    Article  CAS  PubMed  Google Scholar 

  • Holm, L., Sander, C., and Murzin, A., 1994, Three sisters, different names, Nature Structural Biology 1:146–147.

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi, S., Ishizuka, H., and Beppu, T., 1991, Cloning, nucleotide sequence and transcriptional analysis of the NAD(P)-dependent cholesterol dehydrogenase gene from a Nocardia sp. and its hyperexpression in Streptomyces sp., Appl. Environ. Microbiol. 57:1386–1393.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ichinose, H., Katoh, S., Sueoka, T., Titani, K., Fujita, K., and Nagatsu, T., 1991, Cloning and sequencing of cDNA encoding human sepiapterin reductase, Biochem. Biophys. Res. Commun. 179:183–189.

    Article  CAS  PubMed  Google Scholar 

  • Krook, M., Marekov, L., and Jörnvall, H., 1990, Purification and structural characterization of placental NAD+-linked 15-hydroxyprostaglandin dehydrogenase. The primary structure reveals the enzyme to belong to the short-chain alcohol dehydrogenase family, Biochemistry 29:738–743.

    Article  CAS  PubMed  Google Scholar 

  • Jany, K.-D., Ulmer, W., Fröschle, M., and Pfleiderer, G., 1984, Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium, FEBS Lett. 165:6–10.

    Article  CAS  PubMed  Google Scholar 

  • Jörnvall, H., Persson, M., and Jeffery, J., 1981, Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type, Proc. Natl Acad. Sci. USA 78:4226–4230.

    Article  PubMed  Google Scholar 

  • Jörnvall, H., von Bahr-Lindström, H., Jany, K.-D., Ulmer, W., and Fröschle, M., 1984, Extended superfamily of short alcohol-polyol-sugar dehydrogenases: Structural similarities between glucose and ribitol dehydrogenases, FEBS Lett. 165:190–196.

    Article  PubMed  Google Scholar 

  • Kimura, M., 1983, The neutral theory of molecular evolution. Cambridge University Press, Cambridge, England.

    Book  Google Scholar 

  • Krook, M., Prozorovski, V., Atrian, S., Gonzàlez-Duarte, R., and Jörnvall, H., 1992, Short-chain dehydrogenases. Proteolysis and chemical modification of prokaryotic 3α/20β-hydroxysteroid, insect alcohol and human 15-hydroxyprostaglandin dehydrogenases, Eur. J. Biochem. 209:233–239.

    Article  CAS  PubMed  Google Scholar 

  • Marekov, L., Krook, M., and Jörnvall, H., 1990, Prokaryotic 20β-hydroxysteroid dehydrogenase is an enzyme of the’ short-chain, non-metalloenzyme’ alcohol dehydrogenase type, FEBS Lett. 266:51–54.

    Article  CAS  PubMed  Google Scholar 

  • McKinley-McKee, J. S., Winberg, J.-O., and Pettersson, G., 1991, Mechanism of action of Drosophila melanogaster alcohol dehydrogenase, Biochem. Internat. 25:879–885.

    CAS  Google Scholar 

  • Morris, H. R., Williams, D. H., Midwinter, G. G., and Hartley, B. S., 1974, A mass-spectrometric sequence study of the enzyme ribitol dehydrogenase from Klebsiella aerogenes, Biochem. J. 141:701–713.

    CAS  PubMed  Google Scholar 

  • Nakajima, K., Hashimoto, T., and Yamada Y., 1993, Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor, Proc. Natl Acad. Sci. U.S.A. 90:9591–9595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peltoketo, H., Isomaa, V., Mäentausta, O., and Vihko, R., 1988, Complete amino acid sequence of human placental 17β-hydroxysteroid dehydrogenase deduced from cDNA, FEBS Lett. 239:73–77.

    Article  CAS  PubMed  Google Scholar 

  • Persson, B., Krook, M., and Jörnvall, H., 1991, Characteristics of short-chain alcohol dehydrogenases and related enzymes, Eur. J. Biochem. 200:537–543.

    Article  CAS  PubMed  Google Scholar 

  • Persson, B., Zigler, Jr, J. S., and Jörnvall, H., 1994, A super-family of medium-chain dehydrogenases/reductases (MDR): Sub-lines including ζ-crystallin, alcohol and polyol dehydrogenases, quinone oxidore-ductases, enoyl reductases, VAT-1 and further proteins, Eur. J. Biochem., submitted.

    Google Scholar 

  • Rat, L., Veuille, M., and Lepesant, J. A., 1991, Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein, J. Mol. Evol. 33:194–203.

    Article  CAS  PubMed  Google Scholar 

  • Rossmann, M. G., Liljas, A., Brändén, C.-I., and Banaszak, L. J., 1975, Evolutionary and structural relationships among dehydrogenases, The Enzymes, 3rd edn (Boyer, P. D., ed.), vol. 11, pp. 61–102, Academic Press, New York.

    Google Scholar 

  • Saitou, N., and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4:406–425.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. F., and Jörnvall, H., 1976, Structural analyses of mutant and wild-type alcohol dehydrogenses from Drosophila melanogaster, Eur. J. Biochem. 68:159–168.

    Article  CAS  PubMed  Google Scholar 

  • Skory, C. D., Chang, P. K., Cary, J., and Linz, J. E., 1992, Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis, Appl. Environ. Microbiol. 58:3527–3537.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki, K., Ueda, S., Sugiyama, M., and Imamura, S., 1993, Cloning and expression of a Pseudomonas 3α-hydroxysteroid dehydrogenase-encoding gene in Escherichia coli, Gene 130:137–140.

    Article  CAS  PubMed  Google Scholar 

  • Thatcher, D. R., 1980, The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (Adh N-11, Adh s and Adh UF) from the fruitfly Drosophila melanogaster, Biochem. J. 187:875–883.

    CAS  PubMed  Google Scholar 

  • Thatcher, D. R., and Sawyer, L., 1980, Secondary structure prediction from the sequence of Drosophila melanogaster (fruitfly) alcohol dehydrogenase, Biochem. J. 187:884–886.

    CAS  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994, Improved sensitivity of profile searches through the use of sequence weights and gap excision, Comput. Appl. Biosci. 10:19–29.

    CAS  PubMed  Google Scholar 

  • Varughese, K. I., Skinner, M. M., Whiteley, J. M., Matthews, D. A., and Xuong, N. H., 1992, Crystal structure of rat liver dihydropteridine reductase, Proc. Natl Acad. Sci. USA 89:6080–6084.

    Article  CAS  PubMed  Google Scholar 

  • Wong, B., 1993, submitted to the EMBL/GenBank/DDBJ databases.

    Google Scholar 

  • Wu, L., Einstein, M., Geissler, W. M., Chan, H. K., Elliston, K. O., and Andersson, S. (1993) Expression cloning and characterization of a human 17β-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20α-hydroxysteroid dehydrogenase activity, J. Biol. Chem. 268:12964–12969.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Persson, B., Krook, M., Jörnvall, H. (1995). Short-Chain Dehydrogenases/Reductases. In: Weiner, H., Holmes, R.S., Wermuth, B. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 5. Advances in Experimental Medicine and Biology, vol 372. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1965-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1965-2_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5808-4

  • Online ISBN: 978-1-4615-1965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics