Skip to main content

Photon Number Squeezed States in Semiconductor Lasers

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Electromagnetic fields, with the noise on one quadrature component reduced to below the quantum mechanical zero-point fluctuation level and the noise on the other quadrature component enhanced to above it, are currently of great interest in quantum optics because of their potential applications to various precision measurements. Such squeezed states of light are usually produced by imposing nonlinear unitary evolution on coherent (or vacuum) states. On the other hand, squeezed states with reduced photon number noise and enhanced phase noise are generated directly by a constant current-driven semiconductor laser. This is the simplest scheme for the generation of nonclassical light, and so far it has yielded the largest quantum noise reduction. The mutual coupling between a lasing junction and an external electrical circuit provides opportunities for exploring the macroscopic and microscopic quantum effects in open systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haken. Light and Matter, vol. 25 of Handbuch der Physik (Springer-Verlag, Berlin, 1970).

    Google Scholar 

  2. M. Sargent III, M. O. Scully. W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading. MA. 1974).

    Google Scholar 

  3. W. H. Louisell Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

    Google Scholar 

  4. R. J. Glauber. Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  Google Scholar 

  5. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).

    Google Scholar 

  6. H. Haug and H. Haken, Z. Phys. 204, 262 (1967).

    Article  Google Scholar 

  7. Y. Yamamoto. S. Machida, O. Nilsson, Phys. Rev. A 34, 4025 (1986).

    Article  Google Scholar 

  8. Y. Yamamoto and S. Machida, Phys. Rev. A 35, 5114 (1987).

    Article  Google Scholar 

  9. S. Machida. Y. Yamamoto. Y. Itava, Phys. Rev. Lett. 58, 1000 (1987).

    Article  Google Scholar 

  10. S. Machida and Y. Yamamoto. Phys. Rev. Lett. 60, 792 (1988).

    Article  Google Scholar 

  11. W. H. Richardson and R. M. Shelby, Phys. Rev. Lett. 64, 400 (1990).

    Article  Google Scholar 

  12. H. Takahashi. Adv. Commun. Syst. 1, 227 (1965).

    Google Scholar 

  13. D. Stoler, Phys. Rev. D 4, 1925 (1971).

    Article  Google Scholar 

  14. H. T. Yuen, Phys. Rev. A 13, 2226 (1976).

    Article  Google Scholar 

  15. D. F. Walls. Nature 306, 141 (1983).

    Article  Google Scholar 

  16. For a recent review, see the special issues on squeezed states in J. Opt. Soc. Am. H 4 (October 1987).

    Google Scholar 

  17. D. F. Walls and R. E. Slusher, Eds., and J. Mod. Opt. (June 1987). R. Loudon and P. L. Knight. Eds.

    Google Scholar 

  18. Y. M. Golubev and I. V. Sokolov. Soc. Phys. JETP 60, 234 (1984).

    Google Scholar 

  19. For the similarities and differences between the laser oscillator and parametric oscillator, for instance, see Y. Yamamoto and H. A. Haus. Phys. Rev. A 41, 5164 (1990).

    Google Scholar 

  20. R. Jackiw, J. Math. Phys. (N.Y.) 9, 338 (1968).

    Article  Google Scholar 

  21. M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34, 3974 (1986).

    Article  Google Scholar 

  22. M. Kitagawa, N. Imoto. Y. Yamamoto. Phys. Rev. A. 35, 5270 (1987).

    Google Scholar 

  23. K. Watanabe and Y. Yamamoto, Phys. Rev. A. 38, 3556 (1988).

    Article  Google Scholar 

  24. M. C. Teich and B. E. A. Salch, J. Opt. Soc. Am. B 2, 275 (1985).

    Article  Google Scholar 

  25. P. Zoller, talk presented at NATO Workshop on Quantum Measurement in Optics (January 1991, Cortina).

    Google Scholar 

  26. I. Bergon et al., Phys. Rev. A 40, 5073 (1989).

    Article  Google Scholar 

  27. F. Haake, D. F. Walls. M. J. Collet. Phys. Rev. A 39, 3211 (1989).

    Google Scholar 

  28. A. van der Ziel, Fluctuation Phenomena in Semiconductors (Butterworth. London. 1959).

    Google Scholar 

  29. Y. Yamamoto. S. Machida. O. Nilsson, in Coherence. Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, Ed. (Wiley. New York. 1991), pp. 461-537.

    Google Scholar 

  30. K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).

    Article  Google Scholar 

  31. S. Machida and Y. Yamamoro, Opt. Lett. 14, 1045 (1989).

    Article  Google Scholar 

  32. W. H. Richardson. S. Machida. Y. Yamamoto, Phys. Rev. Lett. 66, 2867 (1991).

    Article  Google Scholar 

  33. Y. Yamamoto and H. A. Haus, unpublished results.

    Google Scholar 

  34. H. Namizaki, IEEE J. Quantum Electron. QE-11, 427 (1975).

    Article  Google Scholar 

  35. W. H. Richardson and Y. Yamamoto. Phys. Rev. Lett. 66, 1963 (1991).

    Article  Google Scholar 

  36. M. Buttiker, Phys. Rev. Lett. 65, 2901 (1990).

    Article  Google Scholar 

  37. W. H. Richardson and Y. Yamamoto, Phys. Rev. A 44, 7702 (1991).

    Article  Google Scholar 

  38. For a review on quantum theory of measurements, see J. A. Wheeler and W. H. Zurek, Eds. Quantum Theory and Measurement (Princeton Univ. Press, Princeton, NJ. 1983).

    Google Scholar 

  39. C. M. Caves. Phys. Rev. D 23, 1693 (1981).

    Article  Google Scholar 

  40. Y. Lai, H. A. Haus. Y. Yamamoto. Opt. Lett. 16, 1517 (1991).

    Article  Google Scholar 

  41. L. Gillner, G. Bjork. Y. Yamamoto. Phys. Rev. A 41, 5053 (1990).

    Google Scholar 

  42. For a recent review on cavity quantum electrodynamics, see S. Haroche and D. Kleppner, Phys. Today 42, 24 (January 1989).

    Google Scholar 

  43. Y. Yamamoto, S. Machida, G. Bjork, Phys. Rev. A 44, 657 (1991).

    Article  Google Scholar 

  44. Y. Yamamoto and S. Tarucha. unpublished results.

    Google Scholar 

  45. Support for W.H.R. on part of the work was provided bv the let Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, Y., Machida, S., Richardson, W.H. (1995). Photon Number Squeezed States in Semiconductor Lasers. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics