Skip to main content

Cavity Quantum Electrodynamics at Optical Frequencies

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

  • 2381 Accesses

Abstract

Quantum electrodynamics (QED) tells us that the electromagnetic field is, on a mode-by-mode basis, quantized according to the harmonic oscillator model. Each mode is ascribed a lowest energy (or dark) state possessing one half quanta of non-removable energy plus an infinite ladder of equally spaced excited states accessed through the addition or removal of energy quanta from the mode. In the optical regime and under normal thermal conditions, electromagnetic field modes are typically in their dark state. Nevertheless, a residual dark-state atom-field coupling remains, and it is this coupling that mediates shifts and spontaneous radiative decay of atomic states. The experimental reality of dark-state atom-field coupling is frequently interpreted as proof of the quantum description of light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Purcell. Phys. Rev. 69, 1946. 681.

    Article  Google Scholar 

  2. K.H. Drexhage. Prog. Opt. XII. E. Wolf, Ed., North-Holland (1974).

    Google Scholar 

  3. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 1981, 233.

    Article  Google Scholar 

  4. Y. Kaluzny et al., “Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance.” Phys. Rev. Lett. 51, 1983, 1175.

    Article  Google Scholar 

  5. G.S. Agarwal, “Vacuum-field Rabi oscillations of atoms in a cavity,” J. Opt. Soc. Am. B 2 1985 480.

    Google Scholar 

  6. J.J. Sanchez-Mondragon et al., “Theory of spontaneous-emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 1983, 550.

    Article  Google Scholar 

  7. G.S. Agarwal, “Vacuum-field Rabi Splittings in microwave absorption by Rydberg atoms in a cavity,” Phys. Rev. Lett. 53, 1984, 1732.

    Article  Google Scholar 

  8. M. Lewenstein et al., “Spontaneous emission of atoms coupled to frequency-dependent reservoirs,” Phys. Rev. A 38, 1988, 808.

    Google Scholar 

  9. Y. Zhu et al., “Vacuum-field dressed-state pumping,” Phys. Rev. Lett. 61, 1988, 1946.

    Article  Google Scholar 

  10. M. Lindberg and C. Savage, “Steady-state two-level atomic population inversion via a quantized cavity field,” Phys. Rev. A 38, 1988, 5182.

    Google Scholar 

  11. T.W. Mossberg et al., “Trapping and cooling of atoms in a vacuum perturbed in a frequency-selective manner,” Phys. Rev. Lett. 67, 1991, 1723.

    Article  Google Scholar 

  12. M. Lewenstein and T. W. Mossberg, “Spectral and statistical properties of strongly driven atoms coupled to frequency-dependent photon reservoirs,” Phys. Rev. A 37, 1988, 2048.

    Google Scholar 

  13. G. Rempe and H. Walther, “The one-atom maser and cavity quantum electrodynamics,” in Methods of Laser Spectroscopy, Y. Prior et al., eds., Plenum (1986) p. 11.

    Google Scholar 

  14. L. Davidovich et al., “Quantum theory of a two-photon micromaser,” Phys. Rev. A 36, 1987, 3771.

    Google Scholar 

  15. C.M. Savage and H. J. Carmichael, “Single-atom optical bistability,” IEEE J. Quant. Electr. 24, 1988, 1495.

    Article  Google Scholar 

  16. G. Rempe et al., “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1991, 1727.

    Article  Google Scholar 

  17. J.H. Eberly et al., “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1980, 1323.

    Article  MathSciNet  Google Scholar 

  18. R.R. Pun and G.S. Agarwal, “Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping,” Phys. Rev. A 33, 1986, 3610.

    Google Scholar 

  19. H. J. Carmichael, “Photon antibunching and squeezing for a single atom in a resonant cavity,” Phys. Rev. Lett. 55, 1985, 2790.

    Article  Google Scholar 

  20. R.R. Puri and G.S. Agarwal, “Finite-Q cavity electrodynamics: dynamical and statistical aspects,” Phys. Rev. A 35, 1987, 3433.

    Google Scholar 

  21. P.L. Knight and T. Quang, “Sub-Poissonian statistics and squeezing in fluorescence from n atoms in a cavity,” Phys. Rev. A 41, 1990, 6255.

    Google Scholar 

  22. J.I. Cirac et al., “Two-Level system interacting with a finite-bandwidth thermal cavity mode,” Phys. Rev. A 44, 1991, 4541.

    Google Scholar 

  23. P. Alsing et al., “Dynamic Stark effect for the Jaynes-Cummings system,” Phys. Rev. A 45, 1992, 5135.

    Google Scholar 

  24. S. Haroche and J.M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” Adv. At. Molec. Phys. 20, 1985, 347.

    Article  Google Scholar 

  25. P. Dobiasch and H. Walther, “Quantum electrodynamic effects in finite space,” Ann. Phys. Ff. 10, 1985, 825.

    Article  Google Scholar 

  26. J.A.C. Gallas, et al., “Rydberg atoms: High-resolution spectroscopy and radiation interaction—Rydberg molecules,” Adv. At. Molec. Phys. 20, 1985, 413.

    Article  Google Scholar 

  27. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today, 42, 1989, 24.

    Article  Google Scholar 

  28. P. Meystre, “Cavity QED,” in Nonlinear Optics in Solids, Springer Series in Wave-Phenomena, Vol. 9, O. Keller, ed., Springer-Verlag, Berlin 1990.

    Google Scholar 

  29. S. Haroche, “Cavity quantum electrodynamics,” Les Houches Session LIII, 1990, J. Dalibard et al., eds., Elsevier Science Publishers, 1991.

    Google Scholar 

  30. P. Meystre, “Cavity quantum optics and the quantum measurement process,” Prog. Opt. 30, E. Wolf, Ed., North-Holland (1992).

    Google Scholar 

  31. E.A. Hinds, “Cavity quantum electrodynamics,” Adv. At. Molec. and Opt. Phys. 28, 1991, 237.

    Article  Google Scholar 

  32. R.J. Thompson et al., “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1992, 1132.

    Article  Google Scholar 

  33. R. Loudon, The Quantum Theory of Light, Oxford (1983).

    Google Scholar 

  34. H.B. Lin et al., “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 1992, 6756.

    Google Scholar 

  35. R.G. Hulet et al., “Inhibited spontaneous emission by a Rydberg atom,” Phys. Rev. Lett. 55, 1985, 2137.

    Article  Google Scholar 

  36. W. Jhe et al. “Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space,” Phys. Rev. Lett. 58, 1987, 666.

    Article  Google Scholar 

  37. J.P. Wittke, “Spontaneous-emission rate alteration by dielectric and other wave-guiding structures,” RCA Review, 36, 1975, 655.

    Google Scholar 

  38. Y. Yamamoto et al., “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt Commun. 80, 1991, 337.

    Article  Google Scholar 

  39. F. DeMartini et al., “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 1987, 2955.

    Article  Google Scholar 

  40. H. Yokoyama et al., “Spontaneous emission and laser oscillation properties of microcavities containing a dye solution,” Appl. Phys. Lett. 58, 1991, 2598.

    Article  Google Scholar 

  41. E.A. Hinds and V. Sandoghdar, “Cavity QED level shifts of simple atoms,” Phys. Rev. A 43, 1991, 398.

    Google Scholar 

  42. F. Bernardot et al., “Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity,” Europhys. Lett. 17, 1992, 33.

    Article  Google Scholar 

  43. M. Hercher, “The spherical mirror Fabry-Perot interferometer,” Appl. Opt. 7, 1968, 951.

    Article  Google Scholar 

  44. D.J. Heinzen and M.S. Feld, “Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator,” Phys. Rev. Lett. 59, 1987, 2623.

    Article  Google Scholar 

  45. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 1987, 2059.

    Article  Google Scholar 

  46. K.M. Ho et al., “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 1990, 3152.

    Article  Google Scholar 

  47. S. John and J. Wang, “Quantum optics of localized light in a photonic bandgap,” Phys. Rev. B 43, 1991, 12774.

    Google Scholar 

  48. G. Kurizhi and A.Z. Genack, “Suppression of molecular interactions in periodic dielectric structures,” Phys. Rev. Lett. 61, 1988, 2269.

    Article  Google Scholar 

  49. Y. Zhu et al., “Vacuum Rabi splitting as a feature of linear dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 1990, 2499.

    Article  Google Scholar 

  50. G. Rempe et al., “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 1987, 353.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morin, S.E., Wu, Q., Mossberg, T.W. (1995). Cavity Quantum Electrodynamics at Optical Frequencies. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics