Skip to main content

Confined Electrons and Photons: A Summary

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

The 1993 Erice Advanced Study Institute (ASI) on Confined Electrons and Photons was organized along two main lines: one is the increasing electron-motion quantization occuring when semiconductor heterostructures are progressively structured in 1, 2, 3 directions (quantum wells, wires or boxes respectively), the other is the photon mode control obtained by structuring the dielectric function of a material system, leading to optical microcavity or photonic bandgap effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., C. Weisbuch and B. Vinter, “Quantum Semiconductor Structures”, Academic, Boston (1991)

    Google Scholar 

  2. See, e.g., ref. 1 and also the special issue of Physics Today, June 1993, pp. 22-73 on the optics of nanostructures

    Google Scholar 

  3. An excellent single reference is the recent multiauthor book by P.R. Berman ed., “Cavity quantum electrodynamics”, Advances in Atomic, Molecular and Optical Physics, suppl. 2, Academic, Boston (1994).

    Google Scholar 

  4. An excellent short introduction by Haroche and Kleppner is reproduced in the present volume: S. Haroche and D. Kleppner, Cavity Q.E.D., Physics Today, 42: 24 (1989).

    Article  Google Scholar 

  5. E.M. Purcell, “Spontaneous Emission probabilities at radiofrequencies”, Phys. Rev. 69: 681 (1946). (reprinted here)

    Article  Google Scholar 

  6. H. Yokoyama, “Physics and Device Applications of Optical Microcavities”, Science 256: 66 (1992). (reprinted here)

    Article  Google Scholar 

  7. E. Yablonovitch, “Photonic bandgap structures”, J. Opt. Soc. Am. B10: 283 (1993). (reprinted here)

    Google Scholar 

  8. See, also, G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures”, Les éditions de Physique — Wiley, les Ulis, (1988)

    Google Scholar 

  9. M. Altarelli, Enveloppe function approach to electronic states in heterostructures, in Proc. Intal School of Physics Enrico Fermi, Varenna (1991)

    Google Scholar 

  10. M. Altarelli, “Semiconductor Superlattices and Interfaces”, A. Stella and L. Miglio eds., North-Holland, Amsterdam (1993).

    Google Scholar 

  11. For a recent review, see E. T. Yu, J.O. Mc Caldin and T.C. Mc Gill, Band offsets in semiconductor heterojunctions, Solid State Physics vol. 46, Academic, New-York, (1992)

    Google Scholar 

  12. D.S. Chemla and D.A.B. Miller, Room temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures, J.O.S.A. B2, 1115 (1985). (reprinted here)

    Google Scholar 

  13. M. Shinada and S. Sugano, Interband Optical Transitions in Extremely Anisotropic Semiconductors, J. Phys. Soc. Japan 21: 66 (1966). (reprinted here)

    Google Scholar 

  14. For a review of the work up to the late 1960ies, see E. Burstein and F. De Martini eds, “Polaritons”, Proc. of the First Taormina Conf. on the Structure of Matter, Taormina, Italy, 1972; Pergamon, London — New York (1974).

    Google Scholar 

  15. M. Born and K. Huang, “The Dynamical Theory of Crystal Lattices”, Oxford U.P., Oxford, (1954)

    Google Scholar 

  16. J.J. Hopfield, Aspects of Polaritons, Proc. Int. Conf. Phys. of Semicond., Kyoto 1966; J. Phys. Soc. Japan 21, Suppl.: 77 (1966). (reprinted here)

    Google Scholar 

  17. J.J. Hopfield, Excitons and their electromagnetic interactions, in Proc. Intal School of Physics “Enrico Fermi” “Quantum Optics”, R. Glauber ed., Academic, New-York (1969)

    Google Scholar 

  18. J.J. Hopfield and D.G. Thomas, Theoretical and experimental effects of spatial dispersion on the optical properties of crystals, Phys. Rev. 132: 563 (1963)

    Article  Google Scholar 

  19. Y. Toyozama, On the dynamical behaviour of an exciton, Progr. Theor. Phys. (Tokyo), suppl. 12: 111 (1959)

    Google Scholar 

  20. D.D. Sell, J.V. Di Lorenzo, R. Dingle and D.E. Stokowski, Polariton reflectance and photoluminescence in high-purity GaAs, Phys. Rev. B7: 4568 (1973)

    Google Scholar 

  21. E. Gross, S. Permogorov, V. Travnikov and A. Selkin, Polariton emission from crystals, Solid State Commun. 10: 1071 (1972)

    Article  Google Scholar 

  22. H. Sumi, “On the exciton luminescence at low temperatures: Importance of the polariton viewpoint”, J. Phys. Soc. Jpn 21: 1936 (1976).

    Google Scholar 

  23. C. Weisbuch and R.G. Ulbrich, Resonant polariton fluorescence in Gallium Arsenide, Phys. Rev. Lett. 39: 654 (1977)

    Article  Google Scholar 

  24. C. Weisbuch and R.G. Ulbrich, Resonant light scattering mediated by excitonic polaritons, in “Light Scattering in Solids III”, M. Cardona and G. Guntherodt, Springer, Heidelberg — New York (1982)

    Google Scholar 

  25. V.M. Agranovitch and O.A. Dubowskii, Effect of retarded interaction on the exciton spectrum in one-dimensional and two-dimensional crystals, J.E.T.P. Letters 3: 223 (1966).(reprinted here)

    Google Scholar 

  26. L.C. Andreani, F. Tassone and F. Bassani, Radiative lifetime of excitons in quantum wells, Solid State Commun. 77: 641 (1991)

    Article  Google Scholar 

  27. D.S. Citrin, Homogeneous linewidth effects on radiative lifetimes of excitons in quantum wells, Solid State Commun. 84: 281 (1992)

    Article  Google Scholar 

  28. B. Deveaud, F. Clérot, N. Roy, K Satzke, B. Sermage and D.S. Katzer, Enhanced radiative recombination of free excitons in GaAs quantum wells, Phys. Rev. Lett. 67: 2355 (1991)

    Article  Google Scholar 

  29. J. Feldmann, G. Peter, E. Göbel, P. Dawson, K. Moore, C. Foxon and R.J. Elliott, Linewidth dependance of radiative exciton lifetimes in quantum wells, Phys. Rev. Lett. 59: 2337 (1987)

    Article  Google Scholar 

  30. J. Hegarty and M.D. Sturge, Studies of exciton localization in quantum-well structures by nonlinear-optical techniques, J.O.S.A. B2: 1143 (1985) (reprinted here)

    Google Scholar 

  31. D.S. Citrin, Long intrinsic radiative lifetimes of excitons in quantum wires, Phys. Rev. Lett. 69: 3393 (1992)

    Article  Google Scholar 

  32. E.I. Rashba and G.E. Gurgenishivli, To the theory of the band edge absorption in semiconductors, Fiz. Tverd. Tela 4: 1029 (1962) [Sov. Phys. — Solid State 4: 759 (1962)]

    Google Scholar 

  33. T. Takagahara, Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots, Phys. Rev. B36: 9293 (1987) (reprinted here)

    Google Scholar 

  34. T. Takagahara, Enhancement of excitonic optical nonlinearity in a quantum dot array, Optoelectronics-Devices and applications 8: 429 (1993)

    Google Scholar 

  35. E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B37: 1273 (1988) (reprinted here)

    Google Scholar 

  36. see also Exciton enhancement of optical nonlinearity in low dimensional crystals, Optical and Quantum Electronics 21: 441 (1989)

    Google Scholar 

  37. T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots, Phys. Rev. B47: 4569 (1993)

    Google Scholar 

  38. H. Akiyama, S. Koshiba, J. Someya, Kwada, H. Noge, Y. Nakamura, T. Inoshita, A. Shimizu and H. Sakaki, Thermalization effects on radiative decay of excitons in quantum wires, Phys. Rev. Lett. 72: 924 (1994)

    Article  Google Scholar 

  39. D. Gershoni, M. Katz, W. Wegscheider, L.N. Pfeiffer, R.A. Logan and K. West, Radiative lifetimes of excitons in quantum wires, to be published

    Google Scholar 

  40. A. Nakamura, H. Yamada and T. Tokizaki, Size-dependent radiative decay of excitons in CuCl semiconducting quantum spheres embedded in glasses, Phys. Rev. B40: 8585 (1989)

    Google Scholar 

  41. T. Kataoka, T. Tokizaki and A. Nakamura, Mesoscopic enhancement of optical nonlinearity in CuCl quantum dots: Giant oscillator strength effect on confined excitons, Phys. Rev. B48: 2815 (1993)

    Google Scholar 

  42. T. Itoh, M. Furumiya, T. Ikehara and C. Gourdon, Size dependent radiative decay time of confined excitons in CuCl microcrystals, Solid State Commun 73: 271 (1990)

    Article  Google Scholar 

  43. The interested reader is also referred to the proceedings of the two conferences held on this subject: W. Van Haeringen and D. Lenstra eds., “Analogies in Optics and Microelectronics”, Kluwer, Dordrecht (1990); Physica B175 (1990).

    Google Scholar 

  44. R. Landauer, Conductance from transmission: Common sense points, Physica Scripta T 42: 110 (1992)

    Article  Google Scholar 

  45. M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Dev. 32: 317 (1988)

    Article  Google Scholar 

  46. E.A. Montie, E.C. Cosman, G.W. St Hooft, M.B. Van der Markt and C.W.J. Beenakker, Observations of the optical analogue of quantized conductance of a point contact, Nature 350: 594(1991)

    Article  Google Scholar 

  47. E. Yablonovitch, Inhibited Spontaneous Emission in Solid State Physics and Electronics, Phys. Rev. Lett. 58: 2059 (1987). (reprinted here)

    Article  Google Scholar 

  48. Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependance of its threshold current, Appl Phys. Lett. 40: 939 (1982)

    Article  Google Scholar 

  49. M. Asada, Y. Miyamoto and Y. Suematsu, Gain and threshold of three-dimensional quantum-box lasers, IEEE J. Quantum Electron. QE-22: 1915 (1986)

    Article  Google Scholar 

  50. A. Yariv, Scaling laws and minimal threshold currents for quantum-confined semiconductor lasers, Appl. Phys. Lett. 53: 1033 (1988)

    Article  Google Scholar 

  51. K.J. Vahala, Quantum Box fabrication tolerance and size limits in semiconductors and their effect on optical gain, IEEE J. Quantum El. QE-24: 523 (1988).

    Article  Google Scholar 

  52. D.A.B. Miller, D.S. Chemla and S. Schmitt-Rink, Electroabsorption of highly confined systems: Theory of the quantum-confined Franz-Keldysh effect in semiconductor quantum wires and dots, Appl Phys. Lett. 52: 2154 (1988)

    Article  Google Scholar 

  53. U. Böckelmann and G. Bastard, Phonon scattering and energy relaxation in two-, one-and zero-dimensional electron gases, Phys. Rev. B42: 8947 (1991)

    Google Scholar 

  54. H. Benisty, C. M. Sotomayor-Torres and C. Weisbuch, Intrinsic mecanism for the poor luminescence properties of quantum-box systems, Phys. Rev. B44: 10945 (1991)

    Google Scholar 

  55. K. Brunner, U. Böckelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle and G. Weimann, Photoluminescence from a single GaAs/AlGaAs quantum dot, Phys. Rev. Lett. 69: 3216 (1992)

    Article  Google Scholar 

  56. A. Abragam, “The Principles of Nuclear Magnetism”, Oxford U. P., Oxford (1961)

    Google Scholar 

  57. P.W. Milonni and J.H. Eberly, “Lasers”, Wiley, New-York (1988)

    Google Scholar 

  58. Y. Zhu, D.J. Gauthier S.E. Morin, Q. Wu, H.J. Carmichael and T.W. Mossberg, Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations, Phys. Rev. Lett. 64: 2499 (1990)

    Article  Google Scholar 

  59. S.E. Morin, Q. Wu and T.W. Mossberg, Cavity quantum electrodynamics at optical frequencies, Optics and Photonics News, Aug. 1992, p. 8.

    Google Scholar 

  60. C. Weisbuch, M. Nishioka, A. Ishikawa and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69: 3314(1992)

    Article  Google Scholar 

  61. R. Houdre, R.P. Stanley, U. Oesterle, M. Ilegems and C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity, Phys. Rev. B49: 16761 (1994)

    Google Scholar 

  62. R. Houdre, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandini and M. Ilegems, Measurement of cavity polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett., to be published (1994)

    Google Scholar 

  63. T. Baba, T. Hamano, F. Koyama and K. Iga, Spontaneous Emission factor of a microcavity DBR surface-emitting laser, IEEE J. Quantum Electronics QE-27: 1347 (1991)

    Article  Google Scholar 

  64. G. Bjork, H. Heitmann and Y. Yamamoto, Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers, Phys. Rev. B47: 4451 (1993)

    Google Scholar 

  65. A.M. Vredenberg, N.E.J. Hunt, E.F. Schubert, D.C. Jacobson, J.M. Poate and G.J. Zydzik, Controlled spontaneous emission from Er+ in a transparent Si/SiO2 microcavity, Phys. Rev. Lett. 71: 517 (1993)

    Article  Google Scholar 

  66. T. Tezuka, S. Numour, H. Yoshida and T. Noda, Spontaneous emission enhancement in pillar-type microcavities, Jpn J. Appl. Phys. 32: L54 (1993)

    Article  Google Scholar 

  67. Y. Yamamoto, and R.E. Slusher, Optical processes in microcavities, Physics Today June 1993, p. 66

    Google Scholar 

  68. Y. Yamamoto, S. Machida and W.H. Richardson, Photon number squeezed states in semiconductor lasers, Science vol. 255: 1219 (1992).

    Article  Google Scholar 

  69. R.P. Stanley, R. Houdre, U. Oesterle, M. Ilegems and C. Weisbuch, Impurity modes in onedimentional periodic systems: The transition from photonic bandgaps to microcavities, Phys. Rev. A48: 2246 (1993).

    Google Scholar 

  70. H.O. Everitt, Applications of photonic band gap structures, Optics and Photonics News, Nov. 1992, p. 18. (reprinted here)

    Google Scholar 

  71. V.M. Agranovitch and K.I. Grigorishin, Effects of weak localization of photons in nonlinear optics of disordered media, Nonlinear optics, 5: 3 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weisbuch, C., Burstein, E. (1995). Confined Electrons and Photons: A Summary. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics