Skip to main content

Design and Synthesis of HIV Protease Inhibitors Containing Allophenylnorstatine as a Transition-State Mimic

  • Chapter
Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 362))

Abstract

The human immunodeficiency virus type-1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS), codes for a virus-specific aspartic protease responsible for processing the gag and gag-pol polyproteins and for the proliferation of the retrovirus (Fig. 1). The HIV-1 protease functions as a homodimer and can recognize Phe-Pro and Tyr-Pro sequences as the cleavage site, but mammalian aspartic proteases do not have such specificity. These features provided a basis for the rational design of selective HIV protease-targeted drugs for the treatment of AIDS and related complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Mimoto, J. Imai, S. Tanaka, N. Hattori, O. Takahashi, S. Kisanuki, Y. Nagano, M. Shintani, H. Hayashi, H. Sakikawa, K. Akaji, and Y. Kiso, Chem. Pharm. Bull., 39: 2465 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. A. Wlodawer, M. Miller, M. Jaskolski, B. K. Sathyanarayana, E. Baldwin, I. T. Weber, L. M. Selk, L. Clawson, J. Schneider, and S. B. H. Kent, Science, 245: 616 (1989)

    Article  PubMed  CAS  Google Scholar 

  3. Y. Kiso, Y. Fujiwara, T. Kimura, A. Nishitani, and K. Akaji, Int. J. Peptide & Protein Res., 40: 308 (1992).

    Article  CAS  Google Scholar 

  4. M. L. Moore, W. M. Bryan, S. A. Fakhoury, V. W. Magaard, W. F. Huffman, B. D. Dayton, T. D. Meek, L. Hyland, G. B. Dreyer, B. W. Metcalf, J. E. Strickler, J. G. Gorniak, and C. Debouck, Biochem. Biophys. Res. Commun., 159: 420 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. K. Iizuka, T. Kamijo, T., H. Harada, K. Akahane, T. Kubota, H. Umeyama, T. Ishida, and Y. Kiso, J. Med. Chem., 33: 2707 (1990).

    Article  PubMed  Google Scholar 

  6. T. Mimoto, J. Imai, S. Tanaka, N. Hattori, S. Kisanuki, K. Akaji, and Y. Kiso, Chem. Pharm. Bull., 39: 3088 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. N. A. Roberts, J. A. Martin, D. Kinchington, A. V. Broadhurst, J. C. Craig, I. B. Duncan, S. A. Galpin, B. K. Handa, J. Kay, A. Krohn, R. W. Lambert, J. H. Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G. J. Thomas, and P. J. Machin, Science, 248: 358 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. D. H. Rich, C. -Q. Sun, J. V. N. V. Prasad, A. Pathiasseril, M. V. Toth, G. R. Marshall, M. Clare, R. A. Mueller, and K. Houseman, J. Med. Chem., 34: 1222 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. T. Mimoto, J. Imai, S. Kisanuki, S. Tanaka, N. Hattori, O. Takahashi, R. Kato, T. Yumisaki, H. Sakikawa, K. Akaji, and Y. Kiso, In: Peptide Chemistry 1991, edited by A. Suzuki, pp. 395–400. Osaka: Protein Research Foundation (1992).

    Google Scholar 

  10. T. Mimoto, J. Imai, S. Kisanuki, H. Enomoto, N. Hattori, K. Akaji, and Y. Kiso, Chem. Pharm. Bull., 40:2251 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. S. Kageyama, T. Mimoto, Y. Murakawa, M. Nomizu, H. Ford, T. Shirasaka, S. Gulnik, J. Erickson, K. Takada, H. Hayashi, S. Broder, Y. Kiso, and H. Mitsuya, Antimicrob. Agents Chemother., 37: 810 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. H. Mitsuya, R. Yarchoan, S. Kageyama, and S. Broder, FASEB J., 5: 2369 (1991)

    PubMed  Google Scholar 

  13. S. Kageyama, J. N. Weinstein, T. Shirasaka, D. J. Kempf, D.W. Norbeck, J. J. Plattner, J. Erickson, and H. Mitsuya, Antimicrob. Agents Chemother., 36: 926 (1992).

    Article  PubMed  Google Scholar 

  14. A. Kiriyama, T. Mimoto, Y. Kiso, and K. Takada, Biopharm. Drug. Disp., 14: 199 (1993).

    Article  CAS  Google Scholar 

  15. A. Kiriyama, T. Mimoto, S. Kisanuki, Y. Kiso, and K. Takada, Biopharm. Drug. Disp., 14: 697 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiso, Y. (1995). Design and Synthesis of HIV Protease Inhibitors Containing Allophenylnorstatine as a Transition-State Mimic. In: Takahashi, K. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 362. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1871-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1871-6_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5761-2

  • Online ISBN: 978-1-4615-1871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics