Skip to main content

The Impact of Historical Contingency on Gene Phylogeny

Plant Actin Diversity

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 28))

Abstract

The integration of Darwin’s theories on natural selection (Darwin, 1872) into genetics in the first half of this century resulted in the interpretation of most genetic variation as having either some positive or negative selective consequence (Gould and Lewontin, 1979). In the last few decades, as the molecular evolution of protein and DNA sequences was considered, this Darwinian viewpoint gave way to neutral mutation-random drift hypothesis, which supposes that the majority of mutations have little or no effect on organismal fitness (Kimura, 1968, 1983; Avise, 1994). DNA sequences are randomly fixed in a population with selection only occasionally restraining the outcome. Taken at its extreme this theory suggests that each new mutational event is unaffected by previous mutations, since most of these mutations were also neutral. However, as this theory has matured in light of the data on complex gene phylogenies, a gentler view has developed. This includes “nearly neutral” mutations, which are thought of as being intermediate between neutral and selected mutations (Ohta, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, Y.-Q., Huang, S., McDowell, J. M., McKinney, E. C., and Meagher, R. B., 1994, The Arabidopsis ACT1/ACT3 actin subclass is expressed in meristems, organ primordia, and mature pollen, in preparation.

    Google Scholar 

  • Anderson, R. P., and Roth, J. J., 1977, Tandem genetic duplications in phage and bacteria, Annu. Rev. Microbiol. 31:473–505.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J. C., 1994, Molecular Markers, Natural History and Evolution, Chapman & Hall, London, pp. 16–43.

    Book  Google Scholar 

  • Baird, W. V., and Meagher, R. B., 1987, A complex gene superfamily encodes actin in petunia, EMBO J. 6:3223–3231.

    PubMed  CAS  Google Scholar 

  • Bennett, M. D., and Smith, J. B., 1991, Nuclear DNA amounts in angiosperms, Philos. Trans. R. Soc. London Sen B 334:309–345.

    Article  CAS  Google Scholar 

  • Bernardi, G., 1993, The vertebrate genome: Isochores and evolution, Mol. Biol. Evol. 10:186–204.

    PubMed  CAS  Google Scholar 

  • Bremer, K., 1985, Summary of green plant phylogeny and classification, Cladistics 1:369–385.

    Article  Google Scholar 

  • Bremer, K., Humphries, C. J., Mishler, B. D., and Churchill, S. P., 1987, On cladistic relationships in green plants, Taxon 36:339–349.

    Article  Google Scholar 

  • Britten, R. J., and Davidson, E. H., 1969, Gene regulation for higher cells: A theory, Science 165:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. C., and Lemmon, B. E., 1991, The cytokinetic apparatus in meiosis: Control of division plane in the absence of a preprophase band of microtubules, in: The Cytoskeletal Basis of Plant Growth and Form (C. W. Lloyd, ed.), pp. 259–276, Academic Press, New York.

    Google Scholar 

  • Brown, R. C., and Lemmon, B. E., 1993, Diversity of cell division in simple land plants holds clues to evolution of the mitotic and cytokinetic apparatus in higher plants, Mem. Torrey Bot. Club. 25:45–62.

    Google Scholar 

  • Bureau, T. E., and Wessler, S. R., 1994, Mobile inverted-repeat elements of the tourist family are associated with the genes of many cereal grasses, Proc. Natl. Acad. Sci. USA 91:1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Cavener, D. R., 1987, Combinatorial control of structural genes in Drosophila: Solutions that work for the animal, BioEssays 7:103–107.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S.-O., and Wick, S. M., 1990, Distribution and function of actin in the developing stomatal complex of winter rye (Secale cereale cv Puma), Protoplasma 157:154–164.

    Article  Google Scholar 

  • Cho, S.-O., and Wick, S. M., 1991, Actin in the developing stomatal complex of winter rye: A comparison of actin antibodies in Rh-phalloidin labeling of control and CB-treated tissues, Cell Motil. 19:25–36.

    Article  CAS  Google Scholar 

  • Clarke, P. H., 1986, Evolution of enzyme structure and function in the Pseudomonas, in: The Bacteria (J. R. Sokatch, ed.), Vol. 10, pp. 71-144, Academic Press.

    Google Scholar 

  • Crane, P. R., 1985, Phylogenetic relationships in seed plants, Cladistics 1:329–348.

    Article  Google Scholar 

  • Crane, P. R., 1989, Patterns of evolution and extinction in vascular plants, in: Evolution and the Fossil Record (K. C. Allen and D. E. G. Briggs, eds.), pp. 153–187, Belhaven Press, London.

    Google Scholar 

  • Crane, P. R., 1990, The phylogenetic context of microsporogenesis, in: Microspores: Evolution and Ontogeny (S. Blackmore and R. B. Knox, eds.), pp. 11–41, Academic Press, New York.

    Google Scholar 

  • Darwin, C., 1872, The Origin of Species: By means of natural selection or the preservation of favoured races in the struggle for life, Mentor Book from New American Library, New York.

    Google Scholar 

  • Darwin, C., 1900, The Variation of Animals and Plants Under Domestication, Vol. II, pp. 413–414, D. Appleton & Co., New York.

    Google Scholar 

  • Dibb, N. J., and Newman, A. J., 1989, Evidence that introns arose at proto-splice sites, EMBO J. 8:2015–2021.

    PubMed  CAS  Google Scholar 

  • Dickinson, W. J., 1988, On the architecture of regulatory systems: Evolutionary insights and implications, BioEssays 8:204–208.

    Article  PubMed  CAS  Google Scholar 

  • Diggle, P. K., 1992, Development and the evolution of plant reproductive characters, in: Ecology and Evolution of Plant Reproduction: New Approaches (R. Wyatt, ed.), pp. 326–355, Chapman & Hall, London.

    Google Scholar 

  • Diggle, P. K., 1994, The expression of andromonoecy in Solanum hirtum (Solanaceae): Phenotypic plasticity and ontogenetic contingency, Am. J. Bot. 81:1354–1365.

    Article  Google Scholar 

  • Esau, K., 1977, Anatomy of Seed Plants, Wiley, New York, pp. 215–242.

    Google Scholar 

  • Gifford, E. M., and Foster, A. S., 1989, Morphology and Evolution of Vascular Plants, Freeman, San Francisco, pp. 432–453.

    Google Scholar 

  • Gould, S. J., 1989a, Developmental constraints in Cerion, with comments on the definition and interpretation of constraint in evolution, Evolution 43:516–539.

    Article  Google Scholar 

  • Gould, S. J., 1989b, Wonderful Life: The Burgess Shale and the Nature of Natural History, Norton, New York.

    Google Scholar 

  • Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme, Proc. R. Soc. London Ser. B 205:581–598.

    Article  CAS  Google Scholar 

  • Hegeman, G. D., and Rosenberg, S. L., 1970, The evolution of bacterial enzyme systems, Annu. Rev. Microbiol. 24:429–462.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, W., 1965, Phylogenetic systematics, Annu. Rev. Entomol. 10:97–116.

    Article  Google Scholar 

  • Hightower, R. C., and Meagher, R. B., 1986, The molecular evolution of actin, Genetics 114:315–332.

    PubMed  CAS  Google Scholar 

  • Hilu, K. W., 1988, The role of single-gene mutations in the evolution of flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht and B. Wallace, eds.), pp. 97–127, Plenum Press, New York.

    Google Scholar 

  • Hull, D. L., 1973, Darwin and his critics, Harvard University Press, Cambridge, MA, p. 473.

    Google Scholar 

  • Kauffman, S. A., 1986, Developmental logic and its evolution, BioEssays 6:82–87.

    Article  Google Scholar 

  • Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217:624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983, The neutral theory of molecular evolution, Cambridge University Press, London.

    Book  Google Scholar 

  • Kimura, M., 1990, The present status of neutral theory, in: Population Biology of Genes and Molecules (N. Takahata and J. F. Crow, eds.), pp. 1–16, Baifukan Co., Tokyo.

    Google Scholar 

  • Kimura, M., 1991, Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics, Proc. Natl. Acad. Sci. USA 88:5969–5973.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Fukuda, H., and Shibaoka, H., 1987, Reorganization of actin filaments associated with the differentiation of tracheary elements in Zinnia mesophyll cells, Protoplasma 138:69–71.

    Article  Google Scholar 

  • Kobayashi, H., Fukuda, H., and Shibaoka, H., 1988, Interrelation between the spatial disposition of actin filaments and microtubules during the differentiation of tracheary elements in cultured Zinnia cells, Protoplasma 143:29–37.

    Article  Google Scholar 

  • McDonald, J. F., 1990, Macroevolution and retroviral elements, Bio. Sci. 30:183–191.

    Google Scholar 

  • McDonald, J. F., 1994, Evolution and consequences of transposable elements, Curr. Opin. Gen. Dev. 3:855–864.

    Article  Google Scholar 

  • McDowell, J., An, Y.-Q., McKinney, E. C., Huang, S., and Meagher, R. B., 1994, Preferential expression of the Arabidopsis ACT7 actin gene in developing tissues, in preparation.

    Google Scholar 

  • McElroy, D., Rothenberg, M., Reece, K. S., and Wu, R., 1990, Characterization of the rice (Oryza sativa) actin gene family, Plant Mol. Biol. 15:257–268.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, W., and Krumlauf, R., 1992, Homeobox genes and axial patterning, Cell 68:283–302.

    Article  PubMed  CAS  Google Scholar 

  • McLean, B. G., Huang, S., McKinney, E. C., and Meagher, R. B., 1990, Plants contain highly divergent actin isovariants, Cell Motil. 17:276–290.

    Article  CAS  Google Scholar 

  • McLean, M., Baird, W. V., Gerats, A. G. M., and Meagher, R. B., 1988, Determination of copy number and linkage relationships among five actin gene subfamilies in Petunia hybrida, Plant Mol. Biol. 11:663–672.

    Article  CAS  Google Scholar 

  • McLean, M., Gerats, A. G. M., Baird, W. V., and Meagher, R. B., 1990, Six actin gene subfamilies map to five chromosomes of Petunia hybrida, J. Hered. 81:341–346.

    PubMed  CAS  Google Scholar 

  • Margulis, L., and Schwartz, K. V., 1982, Five kingdoms: An illustrated guide to the phyla of life on earth, San Francisco.

    Google Scholar 

  • Meagher, R. B., 1990, Divergence and differential expression of actin gene families in higher plants, Int. Rev. Cytol. 125:139–163.

    Article  Google Scholar 

  • Meagher, R. B., 1991, Divergence and differential expression of actin gene families in higher plants, Int. Rev. Cytol. 125:139–163.

    Article  PubMed  CAS  Google Scholar 

  • Meagher, R. B., and McLean, B. G., 1990, Diversity of plant actins, Cell Motil. 16:164–166.

    Article  CAS  Google Scholar 

  • Meagher, R. B., and Williamson, R. E., 1994, The plant cytoskeleton, in: Arabidopsis (E. Meyerowitz and C. Somerville, eds.), Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY, in press.

    Google Scholar 

  • Meagher, R. B., Berry-Lowe, S., and Rice, K., 1989, Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: Nucleotide substitution and gene conversion, Genetics 123:845–863.

    PubMed  CAS  Google Scholar 

  • Mishler, B. D., and Churchill, S. P., 1985, Transition to a land flora: Phylogenetic relationships of the green algae and the bryophytes, Cladistics 1:305–328.

    Article  Google Scholar 

  • Mitsialis, S. A., and Kafatos, F. C., 1985, Regulatory elements controlling chorion gene expression are conserved between flies and moths, Nature 317:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., 1971, Chance and necessity: An essay on the natural philosophy of modern biology, Wainhouse, Anstryn (trans.),Vintage Books, Random House, New York, pp. 118–137.

    Google Scholar 

  • Ohno, S., 1970, Evolution by Gene Duplication, Springer-Verlag, Berlin, pp. 59–65.

    Google Scholar 

  • Ohta, T., 1992, The nearly neutral theory of molecular evolution, Annu. Rev. Ecol. Syst. 23:263–286.

    Article  Google Scholar 

  • Palevitz, B. A., 1987, Actin in the preprophase band of Allium cepa, J. Cell Biol 104:1515–1520.

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy, M. V., 1985, F-actin architecture in coleoptile epidermal cells, Eur. J. Cell Biol. 39:1–12.

    Google Scholar 

  • Parthasarathy, M. V., Perdue, T. D., Witzmun, A., and Alvernaz, J., 1985, Actin network as a normal component of the cytoskeleton in many vascular plant cells, Am. J. Bot. 72:1318–1323.

    Article  Google Scholar 

  • Preisler, R. S., and Thompson, W. F., 1981, Evolutionary sequence divergence within repeated DNA families of higher plant genomes, J. Mol. Evol. 17:78–84.

    Article  PubMed  Google Scholar 

  • Sachs, T., 1991, Pattern Formation in Plant Tissues, Cambridge University Press, London, pp. 88–100.

    Book  Google Scholar 

  • Salinas, S., Matassi, G., Montero, L. M., and Bernardi, G., 1988, Compositional compartmentalization and compositional patterns in the nuclear genomes of plants, Nucleic Acids Res. 16:4269–4285.

    Article  PubMed  CAS  Google Scholar 

  • Savin, S. M., 1977, The history of the earth’s surface temperature during the past 100 million years, Annu. Rev. Earth Planet. Sci. 5:319–355.

    Article  CAS  Google Scholar 

  • Schaefer, D., Zryd, J.-P, Knight, C. D., and Cove, D. J., 1991, Stable transformation of the moss Physcomitrella patens, Mol. Gen. Genet. 226:418–424.

    PubMed  CAS  Google Scholar 

  • Staiger, C. J., and Schliwa, M., 1987, Actin localization and function in higher plants, 141:1–12.

    CAS  Google Scholar 

  • Staiger, C. J., Goodbody, K. C., Hussey, P. J., Valenta, R., Drobak, B. K., and Lloyd, C. W., 1993, The profilin multigene family of maize: Differential expression of three isoforms, Plant J. 4:631–641.

    Article  PubMed  CAS  Google Scholar 

  • Steeves, T. A., 1989, Patterns in Plant Development, Cambridge University Press, London, pp. 229–254.

    Book  Google Scholar 

  • Sueoka, N., 1962, On the genetic basis of variation and heterogeneity of DNA base composition, Proc. Natl. Acad. Sci. USA 48:1480–1490.

    Article  Google Scholar 

  • Sueoka, N., 1992, Directional mutation pressure, selective constraints, and genetic equilibria, J. Mol. Evol. 34:95–114.

    Article  PubMed  CAS  Google Scholar 

  • Thangavelu, M., Belostotsky, D., Bevan, M. W., Flavell, R. B., Rogers, H. J., and Lonsdale, D. M., 1993, Partial characterization of the Nicotiana tabacum actin gene family: Evidence for pollen specific expression of one of the gene family members, Mol Gen. Genet. 240:290–295.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C. H., 1957, The strategy of the genes, Ruskin House, Allen & Unwin, London.

    Google Scholar 

  • Werth, C. R., and Windham, M. D., 1991, A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression, Am. Nat. 137:515–527.

    Article  Google Scholar 

  • Williams, E. G., Sage, T. L., and Thien, L. B., 1993, Functional syncarpy by intercarpellary growth of pollen tubes in a primitive apocarpous angiosperm, Illicium floridanum Ellis, Illiaceae, Am. J. Bot. 80:137–142.

    Article  Google Scholar 

  • Wolfe, K. H., Sharp, P. M., and Li, W.-H., 1989, Rates of synonymous substitution in plant nuclear genes, J. Mol. Evol. 29:208–211.

    Article  CAS  Google Scholar 

  • Wright, S., 1932, Evolution in Mendelian populations, Genetics. 16:97–159.

    Google Scholar 

  • Wright, S., 1982, Character change, speciation, and the higher taxa, Evolution 36:427–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meagher, R.B. (1995). The Impact of Historical Contingency on Gene Phylogeny. In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1847-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1847-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5749-0

  • Online ISBN: 978-1-4615-1847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics