Skip to main content

Abstract

Hinze’s conceptual model for turbulence near a wall is modelled by a linear constitutive equation and closure hypothesis on an intrinsic rotational degree of freedom. Integration of the model equations yield the universal logarithmic profile for velocity in the transition layer. Verhulst-type non-linear growth of transition layer vorticity is normalized and discretized to an iteration along the real axis of the complex Mandelbrot algorithm with \( {Z_{{n + 1}}} = {Z_{n}}^{2} +\frac{1}{4} \) . This locates vorticity iteration in the transition layer precisely on the domain boundary between a zero-vorticity attractor for the free stream, and an infinite- vorticity attractor for the wall.

Hinze’s horseshoe vortices are modelled as kink-free constructions of scaling circle arcs analogous to Mandelbrot’s line-based “teragon” constructions for Koch- and Peanocurves. Circular initial vortex rings in a superfluid are deformed into differentiable fractal curves growing inward and/or outward without self-intersections. General formulas for three types of admissible circle deformations are given, and their scale factors, growth rates and fractal dimensions are tabulated. Conservation of angular momentum accelerates circulating light nuclei in a discharge plasma above nuclear reaction velocities in twelve stages of the strongest fractal stretching process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Kikuchi, Meteorological-electric phenomena and electrohydrodynamics (EHD) or electrommagnetohydrodynamics (EMHD); Electromagnetodynamic vortices and corn circles, in: “Environmental and Space Electromagnetics”, H. Kikuchi, ed., Springer Verlag (1991).

    Google Scholar 

  2. J. O. Hinze, “Turbulence”, McGraw-Hill, New York, (1975).

    Google Scholar 

  3. G. C. Dijkhuis, Boundary layer model and calculation for horizontal thundercloud electrificaton preceding natural and rocket-triggered lightning, in: “Environmental and Space Electromagnetics”, H. Kikuchi, ed., Springer Verlag (1991).

    Google Scholar 

  4. G. N. Shah et al., Neutron generation in lightning bolts, Nature 313: 773 (1985).

    Article  ADS  Google Scholar 

  5. B. M. Smirnov, Physics of Ball lightning, Physics Reports 224 No. 4 (1993).

    Google Scholar 

  6. G. C. Dijkhuis and J. Pijpelink, Performance of high-voltage test facility designed for investigation of ball lightning, in: “Science of Ball Lightning (Fireball)”, Y.-H. Ohtsuki, ed., World Scientific Publishing Co., Singapore (1989).

    Google Scholar 

  7. G. C. Dijkhuis, Statistics and structure of ball lightning, in: “Proceedings of the Third International Symposium on Ball Lightning”, S. Singer, ed., (in press).

    Google Scholar 

  8. V. Nardi et al., Internal structure of electron-beam filaments, Phys. Rev. A 22: 2211 (1980).

    Article  ADS  Google Scholar 

  9. K. L. Schwarz, Three-dimensional vortex dynamics in superfluid “Helium: Homogeneous superfluid turbulence, Phys. Rev. B 38: 2398 (1988).

    Article  ADS  Google Scholar 

  10. H. van Beelen et al., On a balance equation for superfluid vorticity in capillary flow of helium II, Physica B 153: 248 (1988).

    Article  ADS  Google Scholar 

  11. G. Gamota, et al., Evolution of a pulse of charged vortex rings in superfluid helium, Phys Rev. Letters 26: 960 (1971).

    Article  ADS  Google Scholar 

  12. A. L. Fetter, Vortices and ions in helium, in: “The physics of liquid and solid helium”, K. H. Bennemann and J. B. Ketterson, eds., John Wiley & Sons (1976).

    Google Scholar 

  13. N. V. D’en and A. T. Listrov, Nonisothermal model of asymmetric fluid, Mekhanika Zhidkosti i Gaza (Fluid Dynamics) 2: 87 (1967).

    Google Scholar 

  14. R. F. Avramenko, et al., Experimental investigation of the compact high-energy plasmoids, in: “Proceedings of the Vizotum ′93 Congress on Ball Lightning”, A. G. Keul, ed., Salzburg University, Salzburg, Austria (in press).

    Google Scholar 

  15. G. C. Dijkhuis, “Thermally Driven Mass Flows in the Convection Zone of the Sun, Thesis,” Stanford University, California, USA (1973).

    Google Scholar 

  16. G. C. Dijkhuis, An alternative to mixing-length models for the turbulent boundary layer, Von Karman Institute for Fluid Dynamics, Brussels, Belgium (1978).

    Google Scholar 

  17. B. B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman, New York, (1983).

    Google Scholar 

  18. H.-O. Peitgen and P. H. Richter, “The Beauty of Fractals”, Springer Verlag (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dijkhuis, G.C. (1994). Verhulst Dynamics and Fractal Stretching of Transition Layer Vorticity. In: Kikuchi, H. (eds) Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1829-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1829-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5740-7

  • Online ISBN: 978-1-4615-1829-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics