Skip to main content

MF59 Design and Evaluation of a Safe and Potent Adjuvant for Human Vaccines

  • Chapter
Book cover Vaccine Design

Abstract

Advances in recombinant DNA technology have made possible the advent of a new generation of safer, better-defined subunit vaccines. Because vaccines based on these weakly immunogenic antigens require an adjuvant for efficacy, we undertook the development of a safe and efficacious adjuvant suitable for widespread human administration. Vaccines formulated with aluminum salts (alum), the only adjuvant thus far utilized with vaccines approved in the United States for human administration, were necessarily adopted as a benchmark for the minimum acceptable activity of a new adjuvant. Our goal was to develop an adjuvant that significantly exceeded aluminum hydroxide in potency, while retaining equally low toxicity. By the early 1990s a wide variety of approaches to adjuvant development had been described (Allison and Byars, 1990; Edelman, 1980; Gregoriadis and Panagiotidi, 1989; Warren et al., 1986). Two major mechanisms of adjuvant activity have been repeatedly cited in this literature: the depot effect, whereby long-term release of antigen results in increased immune response; and coadministration of immunostimulators, which specifically activate portions of the immune system in, as yet, incompletely defined fashions. The prototypic strong adjuvant, complete Freund’s adjuvant (CFA), combined these functions by releasing a mixture of immunostimulatory mycobacterial cell wall components along with antigen from a water/mineral oil/Arlacel A emulsion depot over an extended period of time (Freund, 1956). CFA remains the reference standard for potent adjuvant activity; however, it is now considered too toxic in many cases for use even in laboratory animals. In addition to the aluminum salts, several adjuvants based on the depot effect alone have been studied. These include incomplete Freund’s adjuvant (IFA), which lacks the potent, but toxic, cell wall components, and Adjuvant 65 (water/peanut oil/mannide monooleate), a yet further detoxified water/oil formulation (Hilleman et al., 1972a,b). Despite extensive study, neither formulation was approved for human administration. We chose to avoid water/oil emulsions. A more recent version of the depot approach, controlled release of antigen from synthetic polymer microspheres, remains a promising area of study (Cohen et al., 1991; O’Hagan et al., 1991) but appears to have an unacceptably long development time for our purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, A., and Byars, N., 1987, Vaccine technology: Adjuvants for increased efficacy, Biotechnology 5:1043–1045.

    Google Scholar 

  • Allison, A. C., and Byars, N. E., 1990, Adjuvant formulations and their mode of action, Semin. Immunol. 2:369–374.

    PubMed  CAS  Google Scholar 

  • Audibert, F. M., Parant, C., Damais, C., Lefrancier, P., Denien, M., Choay, J., and Chedid, L., 1980, Disassociation of immunostimulating activities of muramyldipeptide (MDP) by linking of amino acids or peptides to the glutaminyl residue, Biochem. Biophys. Res. Commun. 96:915–923.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, J., Parkinson, C., and Sherman, P., 1972, Factors affecting emulsion stability and the HLB concept, J. Colloid Interfac. Sci. 41:359–370.

    Article  CAS  Google Scholar 

  • Brynestad, K., Babbit, B., Huang, L., and Rouse, B. T., 1990, Influence of peptide acylation, liposome incorporation, and synthetic immunomodulators on the immunogenicity of a 1–23 peptide of glycoprotein D of herpes simplex virus: Implications for subunit vaccines, J. Virol. 64:680–685.

    PubMed  CAS  Google Scholar 

  • Byars, N. E., and Allison, A. C., 1987, Adjuvant formulation for use in vaccines to elicit both cell-mediated and humoral immunity, Vaccine 5:223–228.

    Article  PubMed  CAS  Google Scholar 

  • Byars, N. E., Allison, A. C., Harmon, M. W., and Kendal, A. P., 1990, Enhancement of antibody responses to influenza B virus haemagglutinin by use of a new adjuvant formulation, Vaccine 8:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L., and Langer, R., 1991, Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres, Pharm. Res. 8:713–720.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, R., 1980, Vaccine adjuvants, Rev Infect. Dis. 2:370–383.

    Article  PubMed  CAS  Google Scholar 

  • Fidler, I., 1988, Targetting of immunomodulators to mononuclear phagocytes for therapy in cancer, Adv. Drug Deliv. Res. 1:69–76.

    Article  Google Scholar 

  • Fidler, I. J., Sone, S., Fogler, W. F., and Barnes, Z. L., 1981, Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl tripeptide, Proc. Natl. Acad. Sci. USA 78:1680–1684.

    Article  PubMed  CAS  Google Scholar 

  • Freund, J., 1956, The mode of action of immunologic adjuvants, Adv. Tuberc. Res. 7:130–148.

    Google Scholar 

  • Gisler, R. H., Shumann, G., Sackman, W., Pericin, C., Tarcsay, L., and Dietrich, F M., 1986, A novel muramyl peptide, MTP-PE: Profile of biological activities, in: Immunomodulation by Microbial Products and Related Synthetic Compounds (Y K. S. Yamamura, ed.), Excerpta Medica, Amsterdam, pp. 167–170.

    Google Scholar 

  • Gregoriadis, G., and Manesis, E. K., 1980, Liposomes as immunological adjuvants for hepatitis B surface antigens, in: Liposomes and Immunology (H. Six, ed.), Elsevier/North Holland, Amsterdam, pp. 271–283.

    Google Scholar 

  • Gregoriadis, G., and Panagiotidi, C., 1989, Immunoadjuvant action of liposomes: Comparison with other adjuvants, Immunol. Lett. 20:237–240.

    Article  PubMed  CAS  Google Scholar 

  • Hilleman, M. R., Woodhour, A., Friedman, A., Weibel, R. E., and Stokes, J., Jr., 1972a, The clinical application of adjuvant 65, Ann. Allergy 30:152–158.

    PubMed  CAS  Google Scholar 

  • Hilleman, M. R., Woodhour, A. F., Friedman, A., and Phelps, A. H., 1972b, Studies for safety of adjuvant 65, Ann. Allergy 30:477–483.

    PubMed  CAS  Google Scholar 

  • Hunter, R., and Bennett, B., 1984, The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of triblock and octablock copolymers, J. Immunol. 133:3167–3175.

    PubMed  CAS  Google Scholar 

  • Hunter, R., Strickland, F., and Kezdy, F., 1981, The adjuvant activity of nonionic block polymer surfactants. I. The role of hydrophile lipophile balance, J. Immunol. 127:1244–1250.

    PubMed  CAS  Google Scholar 

  • Inselberg, J., Bathurst, I., Konsopon, J., Barchfeld, G., Barr, P., and Rosau, R., 1993, Protective immunity induced in Aotus monkeys by a recombinant SERA protein of Plasmodium falciparum: Adjuvant effects on induction of protective immunity, Infect. Immun. 61:2041–2047.

    Google Scholar 

  • Kossovsky, N., Gelman, A., Sponsler, E., and Millett, D., 1991, Nanocrystalline Epstein-Barr virus decoys, J. Appl. Biomater. 2:251–259.

    Article  PubMed  CAS  Google Scholar 

  • Kotani, S., Watanabe, Y., Kinoshita, F., Shimono, T., Morisaki, I., Shiba, T., Kusumoto, S., Tarumi, Y., and Ikenaka, K., 1975, Immunoadjuvant activities of synthetic N-acetylmuramyl peptides or amino acids, Biken J. 18:105–111.

    PubMed  CAS  Google Scholar 

  • Kreuter, J., Berg, U., Liehl, E., Soliva, M., and Speiser, P. P., 1986, Influence of the particle size on the adjuvant effect of paniculate polymeric adjuvants, Vaccine 4:125–129.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Liehl, E., Berg, U., Soliva, M., and Speiser, P. P., 1988, Influence of hydrophobicity on the adjuvant effect of particulate polymeric adjuvants, Vaccine 6:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Lidgate, D., Trattner, T., Schultz, R., and Maskiewicz, R., 1992, Sterile filtration of a parenteral emulsion, Pharm. Res. 9:860–863.

    Article  PubMed  CAS  Google Scholar 

  • Masihi, K. N., Lange, W., Brehmer, W., and Ribi, E., 1986, Immunobiological activities of nontoxic lipid A: Enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects, Int. J. Immunopharmacol. 8:339–345.

    Article  PubMed  CAS  Google Scholar 

  • Merser, C., Sinay, P., and Adam, A., 1975, Total synthesis and adjuvant activity of bacterial peptidoglycan derivatives, Biochem. Biophys. Res. Commun. 66:1316–1322.

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan, D. T., Jeffery, H., Roberts, M. J., McGee, J. P., and Davis, S. S., 1991, Controlled release microparticles for vaccine development, Vaccine 9:768–771.

    Article  PubMed  Google Scholar 

  • Ott, G., Van Nest, G., and Burke, R. L., 1992, The use of muramyl peptides as vaccine adjuvants, in: Vaccine Research and Developments (W. Koff and H. Six, eds.), Dekker, New York, pp. 89–114.

    Google Scholar 

  • Ribi, E., Takayama, K., Milner, K., Gray, G. R., Goren, M., Parker, R., McLaughlin, C., and Kelly, M., 1976, Regression of tumors by an endotoxin combined with trehalose mycolates of differing structure, Cancer Immunol. Immunother. 1:265–270.

    Article  CAS  Google Scholar 

  • Sanchez-Pescador, L., Burke, R. L., Ott, G., and Van Nest, G., 1988, The effect of adjuvants on the efficacy of a recombinant herpes simplex virus glycoprotein vaccine, J. Immunol. 141:1720–1727.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, M., Kotani, S., Kinoshita, F., Karoh, S., Shiba, T., and Kusumoto, S., 1986, Adjuvant activity of 6-O-acyl-muramyldipeptides to enhance primary cellular and humoral immune responses in guinea pigs: Adaptability to various vehicles and pyrogenicity, Infect. Immun. 53:511–516.

    PubMed  CAS  Google Scholar 

  • Ullrich, S., and Fidler, I., 1992, Liposomes containing muramyl tripeptide phosphatidylethanolamine (MTP-PE) are excellent adjuvants for induction of an immune response to protein and tumor antigens, J. Leukocyte Biol. 52:489–494.

    PubMed  CAS  Google Scholar 

  • Van Nest, G., Steimer, K., Haigwood, N., Burke, R., and Ott, G., 1992, Advanced adjuvant formulations for use with recombinant subunit vaccines, in: Vaccines 92, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 57–62.

    Google Scholar 

  • Warren, H. S., Vogel, F. R., and Chedid, L. A., 1986, Current status of immunological adjuvants, Annu. Rev. Immunol. 4:369–388.

    Article  PubMed  CAS  Google Scholar 

  • White, R. G., Jolies, P., Samour, D., and Lederer, E., 1964, Correlation of adjuvant activity and chemical structure of wax D fractions of mycobacteria, Immunology 7:158–163.

    PubMed  CAS  Google Scholar 

  • Wintsch, J., Chaignat, C. L., Braun, D. G., Jeannet, M., Stalder, H., and Abrignani, S., 1991, Safety and immunogenicity of a genetically engineered human immunodeficiency vaccine, J. Infect. Dis. 163:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, L., 1989, Adjuvant activity of water-insoluble surfactants, Lab. Anim. Sci. 39:222–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ott, G., Barchfeld, G.L., Chernoff, D., Radhakrishnan, R., van Hoogevest, P., Van Nest, G. (1995). MF59 Design and Evaluation of a Safe and Potent Adjuvant for Human Vaccines. In: Powell, M.F., Newman, M.J. (eds) Vaccine Design. Pharmaceutical Biotechnology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1823-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1823-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5737-7

  • Online ISBN: 978-1-4615-1823-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics