Skip to main content
Book cover

Acetogenesis pp 273–302Cite as

Acetogenesis: Reality in the Laboratory, Uncertainty Elsewhere

  • Chapter

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

This chapter focuses on recent work in our research group that further extends our awareness of the diverse metabolic potentials of acetogens and, consequently, broadens our uncertainty in making accurate predictions of the role acetogens actually play at the ecosystem level (i.e., “elsewhere” per the title of this chapter). Without debating what ecosystems are, acetogens are difficult to study in their natural habitat. This difficulty stems largely from the fact that the main product we think they make (i.e., acetate) is not easily assessed (a gaseous product minimizes this complication) and likely turns over rapidly in vivo. Likewise, many of the substrates they may consume are also problematic to assess. In addition, approaches such as the [3H]thymidine incorporation method to assess the productivity of acetogens may greatly underestimate their magnitude (Winding, 1992; Wellsbury et al., 1993). Thus, although enrichment and physiological studies have been somewhat elegant in recent years relative to defining acetogenic potentials in the laboratory, comparatively little is known about what they really do “elsewhere” (as emphasized in Chapter 7). Clearly, native ecosystems such as forests have little in common with test-tube cultures. In the present chapter and those that follow in Part IV these realities and uncertainties are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, M. J., E. T. Littledike, and L. F. James. 1977. Changes in ruminai oxalate degradation rates associated with adaptation to oxalate ingestion. J. Anim. Sci. 45:1173–1179.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., and H. M. Cook. 1981. Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212:675–676.

    Article  PubMed  CAS  Google Scholar 

  • Allison, M. J., K. A. Dawson, W. R. Mayberry, and J. G. Foss. 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Allison, M. J., H. M. Cook, D. B. Milne, S. Gallagher, and R. V. dayman. 1986. Oxalate degradation by gastrointestinal bacteria from humans. J. Nutr. 116:455–460.

    PubMed  CAS  Google Scholar 

  • Anantharam, V., M. J. Allison, and P. C. Maloney. 1989. Oxalate: formate exchange: the basis for energy coupling in Oxalobacter. J. Biol. Chem. 264:7244–7250.

    PubMed  CAS  Google Scholar 

  • Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970. Clostridiumformicoaceticum nov. spec, isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Microbiol. 72:154–174.

    Article  CAS  Google Scholar 

  • Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    Article  CAS  Google Scholar 

  • Baetz, A. L. and M. J. Allison. 1989. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol. 171:2605–2608.

    PubMed  CAS  Google Scholar 

  • Baetz, A. L., and M. J. Allison. 1990. Purification and characterization of formylcoenzyme A transferase from Oxalobacter formigenes. J. Bacteriol. 172:3537–3540.

    PubMed  CAS  Google Scholar 

  • Baetz, A. L., and M. J. Allison. 1992. Localization of oxalyl-coenzyme A decarboxylase, and formyl-coenzyme A transferase in Oxalobacter formigenes cells. Sys. Appl. Microbiol. 15:167–171.

    Article  CAS  Google Scholar 

  • Balen, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27:355–361.

    Article  Google Scholar 

  • Boone, D. R. 1992. Ecology of methanogenesis. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 57–70. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl. Bakt., 1. Abt. Orig. C3:368-376.

    Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    Article  CAS  Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.

    PubMed  CAS  Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1992. Purification and properties of the coenzyme A-linked acetaldehyde dehydrogenase of Acetobacterium woodii. Arch. Microbiol. 158:132–138.

    Article  CAS  Google Scholar 

  • Chandra, T. S., and Y. I. Shethna. 1975. Isolation and characterization of some new oxalate-decomposing bacteria. Antonie van Leeuwenhoek 41:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.

    Article  CAS  Google Scholar 

  • Daniel, S. L., P. A. Hartman, and M. J. Allison. 1987. Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl. Environ. Microbiol. 53:1793–1797.

    PubMed  CAS  Google Scholar 

  • Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471.

    PubMed  CAS  Google Scholar 

  • Daniel, S. L., E. S. Keith, H. Yang, Y. Lin, and H. L. Drake. 1991. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem. Biophys. Res. Commun. 180:416–422.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, S. L., M. Misoph, A. Gößner, and H. L. Drake. 1992. Growth of acetogenic bacteria in the absence of autotrophic CO2 fixation to acetate. Abstr. C133. 7th Int. Symp. Microbial Growth on C 1 Compounds, Warwick.

    Google Scholar 

  • Daniel, S. L., and H. L. Drake. 1993. Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:3062–3069.

    PubMed  CAS  Google Scholar 

  • Davydova-Charakhch’yan, I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1993. Acetogenic bacteria from oil fields of Tataria and western Siberia. Translated from Mikrobiologiya, 61, 306–315, 1992.

    Google Scholar 

  • Dawson, K. A., M. J. Allison, and P.A. Hartman. 1980. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol. 40:833–839.

    PubMed  CAS  Google Scholar 

  • Dehning, I., and B. Schink. 1989a. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151:427–433.

    Article  CAS  Google Scholar 

  • Dehning, I., and B. Schink. 1989b. Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch. Microbiol. 153:79–84.

    Article  CAS  Google Scholar 

  • Dehning, I., M. Stieb, and B. Schink. 1989. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch. Microbiol. 151:421–426.

    Article  CAS  Google Scholar 

  • Dimroth, P. 1987. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51:320–340.

    PubMed  CAS  Google Scholar 

  • Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978a. Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol. 133:26–32.

    PubMed  CAS  Google Scholar 

  • Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978b. Fumarate reductase of Clostridium formicoaceticum. Arch. Microbiol. 119:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Dörner, C., and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156:302–306.

    Article  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256:11137–11144.

    PubMed  CAS  Google Scholar 

  • Drake, H. L. 1992. Acetogenesis and acetogenic bacteria. In: Encyclopedia of Microbiology, Vol. 1, J. Lederberg (ed.), pp. 1–15. Academic Press, San Diego, CA.

    Google Scholar 

  • Drake, H. L. 1993. CO2, reductant, and the autotrophic acetyl-CoA pathway: alternative origins and destinations. In: Microbial Growth on C 1 Compounds, J. C. Murrell and D. P. Kelly (eds.), Intercept Ltd., Andover, U.K.

    Google Scholar 

  • Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152.

    Article  CAS  Google Scholar 

  • Evans, C. W., and G. Fuchs. 1988. Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42:289–317.

    Article  PubMed  CAS  Google Scholar 

  • Eriide, R., and B. Schink. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch. Microbiol. 149:142–148.

    Article  Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by C. thermoaceticum n. sp. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Fox, T. R., and N. B. Comerford. 1990. Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci. Soc. Am. J. 54:1139–1144.

    Article  CAS  Google Scholar 

  • Frazer, A. C., and L. Y. Young. 1985. A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Environ. Microbiol. 49:1345–1347.

    PubMed  CAS  Google Scholar 

  • Friedrich, M., and B. Schink. 1991. Fermentative degradation of glyoxylate by a new strictly anaerobic bacterium. Arch. Microbiol. 156:392–397.

    Article  CAS  Google Scholar 

  • Fuchs, G. 1990. Alternatives to the Calvin cycle and the Krebs cycle in anaerobic bacteria: pathways with carbonylation chemistry. In: The Molecular Basis of Bacterial Metabolism, G. Hauska, and R. Thauer (eds.), pp. 13–20. Springer-Verlag, Berlin.

    Google Scholar 

  • Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 148:305–313.

    Article  CAS  Google Scholar 

  • Gößner, A., S. L. Daniel, and H. L. Drake. 1994. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol 161:126–131.

    Article  Google Scholar 

  • Gottwald, M., J. R. Andreesen, J. LeGall, and L. G. Ljungdahl. 1975. Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J. Bacteriol. 122:325–328.

    PubMed  CAS  Google Scholar 

  • Graustein, W. C., K. Cromack, Jr., and P. Sollins. 1977. Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science 198:1252–1254.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, B., M. Bokranz, P. Schönheit, and A. Kroger. 1988. ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16. Arch. Microbiol. 150:447–451.

    Article  CAS  Google Scholar 

  • Hermann, M., M.-R. Popoff, and M. Sebald. 1987. Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int. J. Syst. Bacteriol. 37:93–101.

    Article  CAS  Google Scholar 

  • Hodgkinson, A. 1977. Oxalic Acid in Biology and Medicine. Academic Press, New York.

    Google Scholar 

  • Hsu, T., S. L. Daniel, M. F. Lux, and H. L. Drake. 1990a. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol. 172:212–217.

    PubMed  CAS  Google Scholar 

  • Hsu, T., M. F. Lux, and H. L. Drake. 1990b. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.

    PubMed  CAS  Google Scholar 

  • Huang, P. M., and A. Violante. 1986. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. In: Interactions of Soil Minerals with Natural Organics and Microbes, P. M. Huang and M. Schnitzer (eds.), pp. 159–221. Soil Science Society of America, Inc., Madison, WI.

    Google Scholar 

  • Johnston, C. G., and J. R. Vestal. 1993. Biogeochemistry of oxalate in the antarctic cryptoendolithic lichen-dominated community. Microb. Ecol. 25:305–319.

    Article  CAS  Google Scholar 

  • Jones, J. G., and B. M. Simon. 1985. Interactions of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49:944–948.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, T. K., and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–505.

    Article  PubMed  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.

    Article  CAS  Google Scholar 

  • Kroger, A. 1974. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochem. Biophys. Acta 347:273–289.

    Article  PubMed  CAS  Google Scholar 

  • Küsel, K., and H. L. Drake. 1994. Acetate synthesis by soil from a Bavarian beech forest. Appl. Environ. Microbiol. 60:1370–1373.

    PubMed  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988a. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetateoxidizing coculture. Arch. Microbiol. 150:513–518.

    Article  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988b. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2/CO2. Appl. Environ. Microbiol. 54:124–129.

    PubMed  CAS  Google Scholar 

  • Loach, P. A. 1976. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies. In: Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data, 3rd ed. Fasman, G. D. (ed.), Vol. 1, pp. 122–130. CRC Press, Cleveland, OH.

    Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 45:1310–1315.

    PubMed  CAS  Google Scholar 

  • Lundie, L. L., Jr., and H. L. Drake. 1984. Development of a minimal defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703.

    PubMed  CAS  Google Scholar 

  • Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990. Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol. Lett. 67:73–78.

    Article  CAS  Google Scholar 

  • Lux, M. F., and H. L. Drake. 1992. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol. Lett. 95:49–56.

    Article  CAS  Google Scholar 

  • Ma, K., S. Siemon, and G. Diekert. 1987. Carbon monoxide metabolism in cell suspensions of Peptostreptococcus productus strain Marburg. FEMS Microbiol. Lett. 43:367–371.

    Article  CAS  Google Scholar 

  • Martin, D. R., A. Misra, and H. L. Drake. 1985. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl. Environ. Microbiol. 49:1412–14

    PubMed  CAS  Google Scholar 

  • Matthies, C., A. Freiberger, and H. L. Drake. 1993. Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch. Microbiol. 160:273–278.

    Article  CAS  Google Scholar 

  • Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.

    Article  Google Scholar 

  • O’Brien, W., and L. G. Ljungdahl. 1972. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109:626–632.

    PubMed  Google Scholar 

  • Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol. Lett. 94:69–74.

    Article  CAS  Google Scholar 

  • Postgate, J. R. 1963. A strain of Desulfovibrio able to use oxamate. Arch. Mikrobiol. 46:287–295.

    Article  PubMed  CAS  Google Scholar 

  • Ruan, Z.-S., V. Anantharam, I. T. Crawford, S. V. Ambudkar, S. Y. Rhee, M. J. Allison, and P. C. Maloney. 1992. Identification, purification, and reconstitution of OxIT, the oxalate: formate antiport protein of Oxalobacter formigenes. J. Biol. Chem. 267:10537–10543.

    PubMed  CAS  Google Scholar 

  • Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.

    PubMed  CAS  Google Scholar 

  • Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie, Jr., and H. L. Drake. 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:1902–1906.

    PubMed  CAS  Google Scholar 

  • Schink, B., and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum, In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Vol. II. A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 1925–1936. Springer-Verlag, New York.

    Google Scholar 

  • Schink, B., A. Brune, and S. Schnell. 1992. Anaerobic degradation of aromatic compounds. In: Microbial Degradation of Natural Products, G. Winkelmann (ed.), pp. 221–242. VCH, Weinheim.

    Google Scholar 

  • Schramm, E., and B. Schink. 1991. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248:6255–6261.

    PubMed  CAS  Google Scholar 

  • Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.

    PubMed  CAS  Google Scholar 

  • Sembiring, T., and J. Winter. 1990. Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl. Microbiol. Biotechnol. 33:233–238.

    Article  CAS  Google Scholar 

  • Smith, R. L., and R. S. Oremland. 1983. Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments. Appl. Environ. Microbiol. 46:106–113.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., F. E. Strohmaier, and R. S. Oremland. 1985. Isolation of anaerobic oxalatedegrading bacteria from freshwater lake sediments. Arch. Microbiol. 141:8–13.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. 1967. Organic acids in soil. In: Soil Biochemistry, A. D. McLaren and G. H. Peterson (eds.), Vol. 1, pp. 119–146. Marcel Dekker, New York.

    Google Scholar 

  • Tanaka, K., and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187.

    Article  CAS  Google Scholar 

  • Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Tschech, A., and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167.

    Article  CAS  Google Scholar 

  • Tyler, S. C. 1992. The global methane budget. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 57–70. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54:561–565.

    PubMed  CAS  Google Scholar 

  • Wellsbury, P., R. A. Herbert, and R. J. Parkes. 1993. Incorporation of [methyl-3H]thymidine by obligate and facultative anaerobic bacteria when grown under defined culture conditions. FEMS Microbiol. Ecol. 12:87–95.

    Article  CAS  Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon monoxide. Curr. Microbiol. 5:255–260.

    Article  CAS  Google Scholar 

  • Winding, A. 1992. [3H]Thymidine incorporation to estimate growth rates of anaerobic bacterial strains. Appl. Environ. Microbiol. 58:2660–2662.

    PubMed  CAS  Google Scholar 

  • Wood, H. G. 1952. Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J. Biol. Chem. 199:579–583.

    PubMed  CAS  Google Scholar 

  • Zellner, G., H. Kneifel, and J. Winter. 1990. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. Appl. Environ. Microbiol. 56:2228–2233.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Drake, H.L., Daniel, S.L., Matthies, C., Küsel, K. (1994). Acetogenesis: Reality in the Laboratory, Uncertainty Elsewhere. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics