Skip to main content

Communication of Islet Cells: Molecules and Functions

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

Abstract

The appearance of multicellular systems, approximately 800 million years ago, was dependent on the ability of cells to develop mechanisms for adhesion to neighbours and to components of an extracellular matrix, as well as mechanisms for exchange of signals between adjacent and distant cells. With evolution, such mechanisms diversified and have been progressively integrated into a complex regulatory network, whereby individual cells sense the state of activity of their neighbours and adapt their own level of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeRoith D. Are all cells “endocrine”? In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism. Philadelphia: JB Lippincott Company, 1990:10–3.

    Google Scholar 

  2. Greenwald I, Rubin GM. Making a difference: the role of cell-to-cell interactions in establishing separate identities for equivalent cells. Cell 1992;68:271–81.

    Article  PubMed  CAS  Google Scholar 

  3. Edelman GM, Crossin KL. Cell adhesion molecules: implications for a molecular histology. Ann Rev Biochem 1991;60:155–90.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Sem Cell Biol 1992;3:3–16.

    Article  CAS  Google Scholar 

  5. Samols E, Stagner JI. Intraislet and islet-acinar portal systems and their significance. In: Samols E, ed. The Endocrine Pancreas. New York: Raven Press, 1991:93–124.

    Google Scholar 

  6. Marks V, Samols E, Stagner J. Intra-islet interactions. In: Flatt PR, ed. Nutrient Regulation of Insulin Secretion. London: Portland Press 1992:41–57.

    Google Scholar 

  7. Berggren PO, Rorsman P, Efendic S, et al. Mechanisms of action of entero-insular hormones, islet peptides and neural input on the insulin secretory process. In: Flat PR, ed. Nutrient Regulation of Insulin Secretion. London: Portland Press, 1992;289–318.

    Google Scholar 

  8. Meda P. Junctional coupling of pancreatic p-cells. In: Huizinga JD, ed. Pacemaker activity and intercellular communication. Boca Raton, Florida: CRC Press, 1995:275–91.

    Google Scholar 

  9. Pipeleers D. Islet cell interactions with pancreatic p-cells. Experientia 1984;40:1114–26.

    Article  PubMed  CAS  Google Scholar 

  10. Chertow BS, Baranetsky NG, Sivitz WI, et al. Cellular mechanisms of insulin release. Effects of retinoids on rat islet cell-to-cell adhesion, reaggregation, and insulin release. Diabetes 1983;32:56874.

    Article  Google Scholar 

  11. Halban PA, Wollheim CB, Blondel B, et al. The possible importance of contact between pancreatic islet cells for the control of insulin release Endocrinology 1982;111:86–94.

    Article  PubMed  CAS  Google Scholar 

  12. Maes E, Pipeleers D. Effects of glucose and 3’,5’-cyclic adenosine monophosphate upon reaggregation of single pancreatic B-cells. Endocrinology 1984;114:2205–9.

    Article  PubMed  CAS  Google Scholar 

  13. Lernmark A. The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 1974;10:431–8.

    Article  PubMed  CAS  Google Scholar 

  14. Pipeleers D. Heterogeneity in pancreatic p-cell population. Diabetes 1992;41:777–81.

    Article  PubMed  CAS  Google Scholar 

  15. Salomon D, Meda P. Heterogeneity and contact-dependent regulation of hormone secretion by individual p-_cells. Exp CellRes 1986;162:507–20.

    Article  CAS  Google Scholar 

  16. Bosco D, Orci L, Meda P. Homologous but not heterologous contact increases the insulin secretion of individual pancreatic p-cells. Exp Cell Res 1989;184:72–80.

    Article  PubMed  CAS  Google Scholar 

  17. Kawai K, Ipp E, Orci L, et al. Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment. Science 1982;218:477–8.

    Article  PubMed  CAS  Google Scholar 

  18. Stagner JI. Pulsatile secretion from the endocrine pancreas: metabolic, hormonal, and neural modulation. In: Samols E, ed. The Endocrine Pancreas. New York: Raven Press, 1991:283–302.

    Google Scholar 

  19. Samols E, Stagner JI, Ewart RBL, Marks V. The order of islet cellular perfusion is B-A-D in the perfused rat pancreas. J Clin Invest 1988;82:1715–21.

    Article  Google Scholar 

  20. Orci L, Unger RH, Renold AE. Structural coupling between pancreatic islet cells. Experientia 1973;29:1015–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kulkarni, RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic p-cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999;96:329–339.

    Article  PubMed  CAS  Google Scholar 

  22. Bergsten P, Hellman B. Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 1993;42:670–4.

    Article  PubMed  CAS  Google Scholar 

  23. Hellman B, Gylfe E, Grapengiesser E, et al. Cytoplasmic Ca’ oscillations in pancreatic p-cells. Biochem Biophys Acta 1992;1113:95–305.

    Google Scholar 

  24. Rorsman P, Trube G. Calcium and delayed potassium currents in mouse pancreatic p-cells under voltage clamp conditions. J Physiol 1986;374:531–50.

    PubMed  CAS  Google Scholar 

  25. Falke LC, Gillis KD, Pressel DM, Mister S. Perforated patch recording allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca’ currents in pancreatic 13-cells. FEBS Lett 1989;251:167–72.

    Article  PubMed  CAS  Google Scholar 

  26. Meissner HP. Electrophysiological evidence for coupling between pancreatic p-cells of pancreatic islets. Nature 1976;262:502–4.

    Article  PubMed  CAS  Google Scholar 

  27. Eddlestone GT, Gonçalves A, Bangham JA, Rojas E. Electrical coupling between cells in islets of Langerhans from mouse. J Membr Biol 1984;77:1–14.

    Article  PubMed  CAS  Google Scholar 

  28. Meda P, Atwater I, Gonçalves A, et al. The topography of electrical synchrony among fl-cells in the mouse islets of Langerhans. Quart J Exp Physiol 1984;69:719–35.

    CAS  Google Scholar 

  29. Valdeolmillos M, Nadal A, Soria B, Garcia-Sancho J. Fluorescence digital image analysis of glucose-induced [CaZli oscillations in mouse pancreatic islets of Langerhans. Diabetes 1993;42:1210–4.

    Article  PubMed  CAS  Google Scholar 

  30. Valdeolmillos M, Santos RM, Contreras D, et al. Glucose-induced oscillations of intracellular Ca’ concentration resembling bursting electrical activity in single mouse islets of Langerhans. FEBS Lett 1989;259:19–23.

    Article  PubMed  CAS  Google Scholar 

  31. Pérez-Armendariz E, Atwater I, Rojas E. Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans. Biophys J 1985;48:741–9.

    Article  PubMed  Google Scholar 

  32. Bleich D, Chen S, Gu JL, Nadler JL. The role of 12-lipoxygenase in pancreatic p-cells. Int J Mol Med 1998;1:265–72.

    PubMed  CAS  Google Scholar 

  33. McDaniel ML, Corbett JA, Kwon G, Hill JR. A role for nitric oxide and other inflammatory mediators in cytokine-induced pancreatic beta-cell dysfunction and destruction. Adv Exp Med Biol 1997;426:313–9.

    PubMed  CAS  Google Scholar 

  34. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 1996; 39:875–90.

    Article  PubMed  CAS  Google Scholar 

  35. Argiles JM, Lopez-Soriano J, Ortiz MA, et al. Interleukin-1 and beta-cell function: more than one second messenger? Endocr Rev 1992; 13: 515–24.

    PubMed  CAS  Google Scholar 

  36. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995;11:549–99.

    Article  PubMed  CAS  Google Scholar 

  37. Sheppard D. Epithelial integrins. BioEssays 1996;18:655–60.

    Article  PubMed  CAS  Google Scholar 

  38. Ruoslahti E, Reed JC. Anchorage dependence, integrins and apoptosis. Cell 1994;77:477–8.

    Article  PubMed  CAS  Google Scholar 

  39. Clark EA, Brugge JS. Integrin and signal transduction pathways: the road taken. Science 1995;268:233–9.

    Article  PubMed  CAS  Google Scholar 

  40. Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 1997;9:76–85.

    Article  PubMed  CAS  Google Scholar 

  41. Albelda SM, Buck CA. Integrin and other cell adhesion molecules. Faseb J 1990;4: 2868–80.

    PubMed  CAS  Google Scholar 

  42. Hynes RO. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz MA, Denninghoff K. av integrins mediate the rise in the intracellular calcium in endothelial cells on fibronectin even though they play a minor role in adhesion. J Biol Chem 1994;269:11133–7.

    PubMed  CAS  Google Scholar 

  44. Meredith JE, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signalling by integrins. Endocrine Reviews 1996;17:207–20.

    PubMed  CAS  Google Scholar 

  45. Mainiero F, Pepe A, Wary KK, et al. Signal transduction by the a6/f34 integrin: distinct ß4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J 1995;14:4470–81.

    PubMed  CAS  Google Scholar 

  46. Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 1996;379:91–6.

    Article  PubMed  CAS  Google Scholar 

  47. Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 1995;130:1181–7.

    Article  PubMed  CAS  Google Scholar 

  48. Burridge K, Fath K, Kelly T, et al. Focal Adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988;4:487–525.

    Article  PubMed  CAS  Google Scholar 

  49. Hildebrand JD, Schaller MD, Parsons JT. Paxillin. A tyrosine phosphorylated focal adhesion-associated protein binds to the carboxyl terminal domains of focal adhesion kinase. Mol Biol Cell 1995;6:637–47.

    PubMed  CAS  Google Scholar 

  50. Levine F, Beattie GM, Hayek A. Differential integrin expression facilitates isolation of human fetal pancreatic epithelial cells. Cell Transplant 1994;3:307–13.

    PubMed  CAS  Google Scholar 

  51. Pictet RL, Rutter WJ. Development of embryonic endocrine pancreas. In: Handbook of physiology. Section 8, vol 1. The endocrine pancreas. Steiner D, Freinkel N, eds. Baltimore: Williams and Wilkins Company, 25–66.

    Google Scholar 

  52. Cirulli V, Beattie GM, Klier G, et al. Expression and function of av(13 and avß5 integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells. 1999; in press.

    Google Scholar 

  53. Kantengwa S, Baetens D, Sadoul K, et al. Identification and characterization of alpha 3 beta 1 integrin on primary and transformed rat islet cells. Exp Cell Res 1997;237:394–402.

    Article  PubMed  CAS  Google Scholar 

  54. Bosco D, Meda P, Halban PA, Rouiller D. Importance of cell-matrix interactions in rat 1-cell secretion in vivo. Role of a6ß, integrin. Diabetes 2000;233–43.

    Google Scholar 

  55. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987;48:549–54.

    Article  PubMed  CAS  Google Scholar 

  56. Lenter M, Uhlig H, Hamann A, et al. A monolonal antibody against an activation epitope on mouse integrin chain-131 blocks adhesion of lymphocytes to the endothelial integrin a6ß1. Proc Natl Acad Sci USA 1993;90:51–5.

    Article  Google Scholar 

  57. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol 1996;8:14515.

    Article  Google Scholar 

  58. Yancey KB. Adhesion molecules. II: interactions of keratinocytes with epidermal basal membrane. J Invest DerrnatoI 1995;104:1008–14.

    Article  CAS  Google Scholar 

  59. Fuchs E. Of mice and men: genetic disorders of the cytoskeleton. Mol Biol Cell 1997;8:189–203.

    PubMed  CAS  Google Scholar 

  60. Montesano R, Mouron P, Amherdt M, Orci L. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J Cell Biol 1983;97:935–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lucas-Clerc C, Massart C, Campion JP, et al. Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Mol Cell Endocrinol 1993;94:9–20.

    Article  PubMed  CAS  Google Scholar 

  62. Amory B, Mourmeaux IL, Remade C. In vitro cytodifferentiation of perinatal rat islet cells within a tridimensional matrix of collagen. In Vitro Cell Dev Biol 1988;24:91–9.

    Article  CAS  Google Scholar 

  63. Barro C, Zaoui P, Morel F, Benhamou P. Matrix metalloproteinase expression in rat pancreatic islets. Pancreas 1998;17:378–82.

    Article  PubMed  CAS  Google Scholar 

  64. Miralles F, Battelino T, Czemichow P, Scharfmann R. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol 1998;143:827–36.

    Article  PubMed  CAS  Google Scholar 

  65. Van Deijnen Jh, Hulstaert Ce, Wolters Gh, Van Schilfgaarde R. Significance of the peri-insular extracellular matrix for islet isolation from the pancreas of rat, dog, pig, and man. Cell Tissue Res 1992;267:139–46.

    Article  PubMed  Google Scholar 

  66. Meyer T, Czub S, Chodnewska I, et al. Expression pattern of extracellular matrix proteins in the pancreas of various domestic pig breeds, the goettingen minipig and the wild boar. Ann Transplant 1997;2:17–26.

    PubMed  CAS  Google Scholar 

  67. Van Deijnen Jh, Van Suylichem Pt, Wolters Gh, Van Schilfgaarde R. Distribution of collagens type I, type III and type V in the pancreas of rat, dog, pig and man. Cell Tissue Res 1994;277:115–21.

    Article  PubMed  Google Scholar 

  68. Kaiser N, Corcos Ap, Sarel I, Cerasi E. Monolayer culture of adult rat pancreatic islets on extracellular matrix: modulation of ß-cell function by chronic exposure to high glucose. Endocrinology 1991;129:2067–76.

    Article  PubMed  CAS  Google Scholar 

  69. Kaiser N, Corcos AP, Tur-Sinai A, et al. Monolayer culture of adult rat pancreatic islets on extracellular matrix: long term maintenance of differentiated ß-cell function. Endocrinology 1988;123:834–40.

    Article  PubMed  CAS  Google Scholar 

  70. Hulinsky I, Cooney S, Harrington J, Silink M. In vitro growth of neonatal rat islet cells is stimulated by adhesion to matrix. Horm Metab Res 1995;27:209–15.

    Article  PubMed  CAS  Google Scholar 

  71. Beattie GM, Lappi DA, Baird A, Hayek A. Functional impact of attachment and purification in the short term culture of human pancreatic islets. J Clin Endocrinol Metab 1991;73:93–8.

    Article  PubMed  CAS  Google Scholar 

  72. Thivolet Ch, Chatelain P, Nicoloso H, et al. Morphological and functional effects of extracellular matrix on pancreatic islet cell cultures. Exp Cell Res 1985;159:313–22.

    Article  PubMed  CAS  Google Scholar 

  73. Schuppin Gt, Bonner-Weir S, Montana E, et al. Replication of adult pancreatic-beta cells cultured on bovine corneal endothelial cell extracellular matrix. In Vitro Cell Dev Biol Anim 1993;29a:33944.

    Google Scholar 

  74. Hulinsky I, Harrington J, Cooney S, Silink M. Insulin secretion and DNA synthesis of cultured islets of Langerhans are influenced by the matrix. Pancreas 1995;11:309–14.

    Article  PubMed  CAS  Google Scholar 

  75. Beattie GM, Rubin JS, Mally MI, et al. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 1996;45:1223–8.

    Article  PubMed  CAS  Google Scholar 

  76. Hayek A, Beanie GM, Cirulli V, et al. Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes 1995;44:1458–60.

    Article  PubMed  CAS  Google Scholar 

  77. Lefebvre VH, Otonkoski T, Ustinov J, et al. Culture of adult human islet preparations with hepatocyte growth factor and 804G matrix is mitogenic for duct cells but not for beta-cells. Diabetes 1998;47:134–7.

    Article  PubMed  CAS  Google Scholar 

  78. Perfetti R, Henderson TE, Wang Y, et al. Insulin release and insulin mRNA levels in rat islets of Langerhans cultured on extracellular matrix. Pancreas 1996;13: 47–54.

    Article  PubMed  CAS  Google Scholar 

  79. Muschel R, Khoury G, Reid LM. Regulation of insulin mRNA abundance and adenylation: dependence on hormones and matrix substrata. Mol Cell Biol 1986;6:337–41.

    PubMed  CAS  Google Scholar 

  80. Edelman GM, Cunningham BA, Thiery J-P, eds. Morphoregulatory molecules. New York: John Wiley & Sons, 1990.

    Google Scholar 

  81. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991;251:1451–5.

    Article  PubMed  CAS  Google Scholar 

  82. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996;84:345–57.

    Article  PubMed  CAS  Google Scholar 

  83. Shapiro L, Fannon AM, Kwong PD, et al. Structural basis of cell-cell adhesion by cadherins. Nature 1995;374:327–33789.

    Article  PubMed  CAS  Google Scholar 

  84. Huber O, Bierkamp C, Kemler R. Cadherins and catenins in development. Curr Opin Cell Biol 1996;8:685–91.

    Article  PubMed  CAS  Google Scholar 

  85. Dahl U, Sjodin A, Semb H. Cadherins regulate aggregation of pancreatic beta-cells in vivo. Development 1996;122 2895–902.

    PubMed  CAS  Google Scholar 

  86. Cirulli V, Crisa L, Beattie GM, et al. Ksa Antigen Ep-Cam Mediates Cell-Cell Adhesion of Pancreatic Epithelial Cells: Morphoregulatory Roles in Pancreatic Islet Development. J Cell Biol 1998;140:1519–34.

    Article  PubMed  CAS  Google Scholar 

  87. Hoperoft DW, Mason DR, Scott RS. Insulin secretion from perifused rat pancreatic pseudoislets. In vitro Cell Dev Biol 1985;21:421–7.

    Article  Google Scholar 

  88. Halban PA, Powers SL, George KL, Bonner-Weir S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 1987;36:783–90.

    Article  PubMed  CAS  Google Scholar 

  89. Rouiller DG, Cirulli V, Halban PA. Differences in aggregation properties and levels of the neural cell adhesion molecule (NCAM) between islet cell types. Exp Cell Res 1990;191:305–12.

    Article  PubMed  CAS  Google Scholar 

  90. Rouiller DG, Cirulli V, Halban PA. Uvomorulin mediates calcium-dependent aggregation of islet cells, whereas calcium-independent cell adhesion molecules distinguish between islet cell types. Dev Biol 1991;148:233–42.

    Article  PubMed  CAS  Google Scholar 

  91. Cirulli V, Baetens D, Rutishauser U, et al. Expression of neural cell adhesion molecule (n-cam) in rat islets and its role in islet cell type segregation. J Cell Sci 1994;107:1429–36.

    PubMed  CAS  Google Scholar 

  92. Esni F, Taljedal IB, Perl AK, et al. Neural cell adhesion molecule (N-cam) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 1999;144:325–37.

    Article  PubMed  CAS  Google Scholar 

  93. Begemann M, Tan SS, Cunningham BA, Edelman GM. Expression of chicken liver cell adhesion molecule fusion genes in transgenic mice. Proc Natl Acad Sci USA 1990;87:9042–6.

    Article  PubMed  CAS  Google Scholar 

  94. Moller CJ, Christgau S, Williamson MR, et al. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas. Mol Endocrinol 1992;6:1332–42.

    Article  PubMed  CAS  Google Scholar 

  95. Hutton JC, Christofori G, Chi WY, et al. Molecular cloning of mouse pancreatic islet R-cadherin: differential expression in endocrine and exocrine tissue. Mol Endocrinol 1993;7:1151–60.

    Article  PubMed  CAS  Google Scholar 

  96. Langley OK, Aletsee-Ufrecht MC, Grant NJ, Gratzl M. Expression of the neural cell adhesion molecule Ncam in endocrine cells. J Histochem Cytochem 1989;37:781–91.

    Article  PubMed  CAS  Google Scholar 

  97. Cirulli V, Halban PA, Rouiller DG. Tumor necrosis factor-alpha modifies adhesion properties of rat islet 3-cells. J Clin Invest 1993;91:1868–76.

    Article  PubMed  CAS  Google Scholar 

  98. Meda P. The role of gap junction membrane channels in secretion and hormonal action. J Bioenerg Biomembr 1996;28:369–78.

    Article  PubMed  CAS  Google Scholar 

  99. Paul DL. New functions for gap junctions. Curr Opin Cell Biol 1995;7:665–72.

    Article  PubMed  CAS  Google Scholar 

  100. Bruzzone R, White TW, Scherer SS, et al. Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 1994;13:1253–60.

    Article  PubMed  CAS  Google Scholar 

  101. Meda P. Probing the function of connexin channels in primary tissues. Methods 2000; 20:232–44.

    Article  PubMed  CAS  Google Scholar 

  102. Meda P, Spray DC. Gap junction function. Adv Mol Cell Biol 2000;30:263–322.

    Article  CAS  Google Scholar 

  103. Meda P, Pepper M, Traub O, et al. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology 1993;133:2371–8.

    Article  PubMed  CAS  Google Scholar 

  104. Meda P, Chanson M, Pepper M, et al. In vivo modulation of connexin 43 gene expression and junctional coupling of pancreatic f -cells. Exp Cell Res 1991;192:469–80.

    Article  PubMed  CAS  Google Scholar 

  105. Charollais A, Serre V, Mock C, et al. Loss of al connexin does not alter the prenatal differentiation of pancreatic 13-cells and leads to the identification of another islet cell connexin. Dev Genet 1999;24:13–26.

    Article  PubMed  CAS  Google Scholar 

  106. Serre-Beinier V, Le Gurun S, Belluardo N, et al. Cx36 preferentially connects I3-cells within pancreatic islets. 2000 abstr, in press.

    Google Scholar 

  107. Pérez-Armendariz M, Roy C, Spray DC, Bennett MVL. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J 1991;59:76–92.

    Article  PubMed  Google Scholar 

  108. Meda P, Amherdt M, Perrelet A, Orci L. Metabolic coupling between cultured pancreatic 13-cells. Exp Cell Res 1981;133:421–30.

    Article  PubMed  CAS  Google Scholar 

  109. Kohen E, Kohen C, Rabinovitch A. Cell-to-cell communication in rat pancreatic islet monolayer cultures is modulated by agents affecting islet cell secretory activity. Diabetes 1983;32:95–8.

    Article  PubMed  CAS  Google Scholar 

  110. Kohen E, Kohen C, Thorell B, et al. Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Science 1979;204:862–5.

    Article  PubMed  CAS  Google Scholar 

  111. Michaels RL, Sheridan JD. Islets of Langerhans: dye coupling among immunocytochemically distinct cell types. Science 1981;214:801–3.

    Article  PubMed  CAS  Google Scholar 

  112. Meda P, Kohen E, Kohen C, et al. Direct communication of homologous and heterologous endocrine islet cells in culture. J Cell Biol 1982;92:221–6.

    Article  PubMed  CAS  Google Scholar 

  113. Meda P, Charollais A, Gjnovci A, et al. Altered 13-cell coupling results in abnormal insulin secretion and glucose tolerance in vivo. Diabetologia 1999;42,Suppl. 1:A46.

    Google Scholar 

  114. Pipeleers D, In’t Veld P, Maes E, Van de Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci USA 1982;79:7322–5.

    Article  PubMed  CAS  Google Scholar 

  115. Bosco D, Meda P. Actively synthesizing 1-3-cells secrete preferentially during glucose stimulation. Endocrinology 1992;129:3157–66.

    Article  Google Scholar 

  116. Philippe J, Giordano E, Gjinovci A, Meda P. cAMP prevents the glucocorticoid-mediated inhibition of insulin gene expression in rodent islet cells. J Clin Invest 1992;90:2228–33.

    Article  PubMed  CAS  Google Scholar 

  117. Meda P, Bosco D, Chanson M, et al. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 1990;86:759–68.

    Article  PubMed  CAS  Google Scholar 

  118. Meda P, Denef J-F, Perrelet A, Orci L. Nonrandom distribution of gap junctions between pancreatic 3-cells. Am J Physiol 1980;238:C114–9.

    PubMed  CAS  Google Scholar 

  119. Meda P, Halban P, Perrelet A, et al. Gap junction development is correlated with insulin content in the pancreatic 13-cell. Science 1980;209:1026–8.

    Article  PubMed  CAS  Google Scholar 

  120. Meda P, Perrelet A, Orci L. Increase of gap junctions between pancreatic 13-cells during stimulation of insulin secretion. J Cell Biol 1979;82:441–8.

    Article  PubMed  CAS  Google Scholar 

  121. Meda P, Michaels RL, Halban PA, et al. In vivo modulation of gap junctions and dye coupling between 13-cells of the intact pancreatic islet. Diabetes 1983;32:858–68.

    Article  PubMed  CAS  Google Scholar 

  122. Bruzzone R, Trimble ER, Gjinovci A, et al. Regulation of pancreatic exocrine function: a role for cell-to-cell communication? Pancreas 1987;2:262–71.

    Article  PubMed  CAS  Google Scholar 

  123. Vozzi C, Ullrich S, Charollais A, et al. Adequate connexin expression is required for proper insulin production. J Cell Biol 1995;131:1561–72.

    Article  PubMed  CAS  Google Scholar 

  124. Vozzi C, Bosco D, Dupont E, et al. Hyperinsulinemia-induced hypoglycemia is enhanced by overexpression of Cx43. Endocrinology 1997;138:2879–85.

    Article  PubMed  CAS  Google Scholar 

  125. Wonkam A, Charollais A, Meda P. Expression of Cx32 in 3-cells leads to hypertrophy of pancreatic islets. 2000;abstr. in press

    Google Scholar 

  126. Drubin DG, Nelson WJ. Origins of cell polarity. Cell 1996;84:335–44.

    Article  PubMed  CAS  Google Scholar 

  127. Kirkpatrick C, Peifer M. Not just glue: cell-cell junctions as cellular signalling centers. Curr Opin Genet Dev 1995;5:56–65.

    Article  PubMed  CAS  Google Scholar 

  128. Kim SK. Tight junctions, membrane-associated guanylate kinase and cell signalling. Curr Opin Cell Biol 1995;7:641–9.

    Article  PubMed  CAS  Google Scholar 

  129. Orci L, Perrelet A. Morphology of membrane systems in pancreatic islets. In: Volk BW, Wellmann KF, eds. The diabetic pancreas. New York: Plenum Press, 1977:171–210.

    Chapter  Google Scholar 

  130. In’t Veld PA, Pipeleers DG, Gepts W. Evidence against the presence of tight junctions in normal endocrine pancreas. Diabetes 1984;33:101–4.

    Article  PubMed  Google Scholar 

  131. Garrod D, Chidgey M, North, A. Desmosomes: differentiation, development, dynamics and diseases. Curr Opin Cell Biol 1996;8:670–8.

    Article  PubMed  CAS  Google Scholar 

  132. Adams JC. Cell adhesion - spreading frontiers, intricate insights. Trends Cell Biol 1997;7:107–10.

    Article  PubMed  CAS  Google Scholar 

  133. Thorens B. Glucagon-like peptide-1 and control of insulin secretion. Diab Metab 1995;21:311–8.

    CAS  Google Scholar 

  134. Chanson M, Fanjul M, Bosco D, et al. Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol 1998;141:1267–75.

    Article  PubMed  CAS  Google Scholar 

  135. Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-Cadherin in the transition from adenoma to carcinoma. Nature 1998;39:190–3.

    Google Scholar 

  136. Perl AK, Dahl U, Wilgenbus P, et al. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic ß tumor cells. Nature Medicine 1999;5:286–91.

    Article  PubMed  CAS  Google Scholar 

  137. Yamasaki H, Naus CCG. Role of connexin genes in growth control. Carcinogenesis 1996;17:1199–213.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meda, P., Bosco, D. (2001). Communication of Islet Cells: Molecules and Functions. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics