Skip to main content

Glucose Toxicity of the Pancreatic ß-Cell

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Abstract

For purposes of this chapter, glucose toxicity is defined as pathophysiologic and largely irreversible damage to the pancreatic islet f3-cell caused by chronic exposure to supraphysiologic glucose concentrations. This leads to profound disturbances in insulin synthesis, which in turn leads to decreased insulin content and secretion. Using various experimental models, many authors have described negative effects of glucose on 13-cell function and termed these effects variously as glucose toxicity, 13- cell exhaustion, or glucose desensitization (1-50). While the distinction between 13- cell exhaustion and glucose toxicity is not always clear, we favor the concept that the two lie in a pathophysiologic continuum. f3-cell exhaustion is the earlier form and likely to be reversible, whereas glucose toxicity is the later form and less reversible. In marked contrast, we view “glucose desensitization” as a temporary, physiological state of p-cell refractoriness induced by repeated or prolonged exposure to high glucose concentrations, which is reversed in a time-dependent manner after restoration of normal glucose concentrations. This term implies an intrinsic and reversible alteration in stimulus-secretion coupling rather than damage to the 13-cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossetti L, Giaccari A, DeFronzo RA. Glucose Toxicity. Diabetes Care 1990;13:610–630.

    Article  PubMed  CAS  Google Scholar 

  2. Yki-Jarvinen H. Glucose Toxicity. Endocr Rev 1992;13:415–431.

    PubMed  CAS  Google Scholar 

  3. Leahy JL. Impaired beta-cell function with chronic hyperglycemia: “overworked beta-cell” hypothesis. Diabetes Rev 1996;4:298–319.

    Google Scholar 

  4. Flatt PR, Abdel-Wahab YHA, Boyd AC, Barnett CR, F.P.M. OH. Pancreatic beta-cell dysfunction and glucose toxicity in non-insulin-dependent diabetes. Proc Nutr Soc 1997;56:243–262.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson RP. Type II diabetes, glucose “non-sense,” and islet desensitization. Diabetes 1989;38:1501–1505.

    Article  PubMed  CAS  Google Scholar 

  6. Robertson RP, Olson LK, Zhang H-J. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 1994;43:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  7. Robertson RP, Olson LK, Redmon JB, Zhang H-J, Towle HC. Glucose toxicity and the insulin gene. In: Draznin G, LeRoith D, eds. Molecular Biology of Diabetes, Part I: Humana Press Inc., 1994:195–212.

    Chapter  Google Scholar 

  8. Grodsky GM, Curry DL, Bennett LL, Rodrigo JJ. Factors influencing different rates of insulin release in vitro. Acta Diabetologia Latina 1968;5:140–161.

    Google Scholar 

  9. Grodsky GM. A new phase of insulin secretion. How will it contribute to our understanding of beta-cell function? Diabetes 1989;38:673–678.

    Article  PubMed  CAS  Google Scholar 

  10. Grodsky GM, Bolaffi JL. Desensitization of the insulin-secreting beta cell. J Cell Biochem 1992;48:3–11.

    Article  PubMed  CAS  Google Scholar 

  11. Giroix M-H, Serradas P, Portha B. The desensitization of normal beta-cells to glucose in vitro is transient and not related to high glucose levels. Endocrinology 1989;125:1999–2007.

    Article  PubMed  CAS  Google Scholar 

  12. Thibault C, Laury M-C, Bailbe D, Ktorza A, Portha B. Effect of prolonged in vivo glucose infusion on insulin secretion in rats with previous glucose intolerance. Endocrinology 1992;130:2521–2527.

    Article  PubMed  CAS  Google Scholar 

  13. Efendic S, Lins PE, Cerasi E. Potentiation and inhibition of insulin release in man following priming with glucose and with arginine-effect of somatostatin. Acta Endocrinologia 1979;90:259271.

    Google Scholar 

  14. Glaser B, Leibovich G, Nesher R, Hartling S, Binder C, Cerasi E. Improved beta-cell function after intensive insulin treatment in severe non-insulin-dependent diabetes. Acta Endocrinologia 1988;118:365–373.

    CAS  Google Scholar 

  15. Kaiser N, Corcos AP, Sarel I, Cerasi E. Monolayer culture of adult rat pancreatic islets on extracellular matrix: modulation of B-cell function by chronic exposure to high glucose. Endocrinology 1991;129:2067–2076.

    Article  PubMed  CAS  Google Scholar 

  16. Gross DJ, Leibowitz G, Cerasi E, Kaiser N. Increased susceptibility of islets from diabetes-prone psammomys obesus to the deleterious effects of chronic glucose exposure. Endocrinology 1996;137:5610–5615.

    Article  PubMed  CAS  Google Scholar 

  17. Liu YQ, Tornheim K, Leahy JL. Shared biochemical properties of glucotoxicity and lipotoxicity in islets decrease citrate synthase activity and increase phosphofructokinase activity. Diabetes 1998;47:1889–1893.

    Article  PubMed  CAS  Google Scholar 

  18. Leahy JL, Bonner-Weir S, Weir GC. Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest 1988;81:1407–1414.

    Article  PubMed  CAS  Google Scholar 

  19. Leahy JL, Bumbalo LM, Chen C. Beta-cell hypersensitivity for glucose precedes loss of glucose-induced insulin secretion in 90% pancreatectomized rats. Diabetologia 1993;36:1238–1244.

    Article  PubMed  CAS  Google Scholar 

  20. Xia M, Hokin LE, Laychock SG. Rat pancreatic islets cultured at hyperglycemic glucose concentrations have altered phosphoinositide turnover, inositol phosphate production and ATP levels. Endocrine 1994;2:741–747.

    CAS  Google Scholar 

  21. Boden G, Ruiz J, Kim C-J, Chen X. Effects of prolonged glucose infusion on insulin secretion, clearance, and action in normal subjects. Am J Physiol 1996:E251–E258.

    Google Scholar 

  22. Purrello F, Rabuazzo AM, Anello M, Patane G. Effects of prolonged glucose stimulation on pancreatic beta cells: from increased sensitivity to desensitization. Acta Diabetol 1996;33:253–256.

    Article  PubMed  CAS  Google Scholar 

  23. Kosaka K, Kuzuya T, Akanuma Y, Hagura R. Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia 1980;18:23–28.

    Article  PubMed  CAS  Google Scholar 

  24. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987;80:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  25. Ling Z, Kiekens R, Mahler T, et al. Effects of chronically elevated glucose levels on the functional properties of rat pancreatic 13-cells. Diabetes 1996;45:1774–1782.

    Article  PubMed  CAS  Google Scholar 

  26. Sako Y, Grill VE. Coupling of n-cell desensitization by hyperglycemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes 1990;39:1580–1583.

    Article  PubMed  CAS  Google Scholar 

  27. Urata Y, Yamamoto H, Goto S, et al. Long exposure to high glucose concentration impairs the responsive expression of y-glutamylcysteine synthetase by interleukin-lb and tumor necrosis factor-a in mouse endothelial cells. J Biol Chem 1996;271:15146–15152.

    Article  PubMed  CAS  Google Scholar 

  28. Pehuet-Figoni M, Ballot E, Bach J-F, Chatenoud L. Aberrant function and long-term survival of mouse 13-cells exposed in vitro to high glucose concentrations. Cell Transplant 1994;3:445–451.

    PubMed  CAS  Google Scholar 

  29. Davalli AM, Ricordi C, Socci C, et al. Abnormal sensitivity to glucose of human islets cultured in high glucose medium: partial reversibility after an additional culture in a normal glucose medium. J Clin Endocrinol Metab 1991;72:202–208.

    Article  PubMed  CAS  Google Scholar 

  30. Bedoya FJ, Jeanrenaud B. Insulin secretory response to secretagogues by perifused islets from chronically glucose-infused rats. Diabetes 1991;40:15–19.

    Article  PubMed  CAS  Google Scholar 

  31. Eizirik DL, Strandell E, Sandler S. Prolonged exposure of pancreatic islets isolated from “pre-diabetic” non-obese diabetic mice to a high glucose concentration does not impair beta-cell function. Diabetologia 1991;34:6–11.

    Article  PubMed  CAS  Google Scholar 

  32. Svensson C, Sandler S, Hellerstrom C. Lack of long-term b-cell glucotoxicity in vitro in pancreatic islets isolated from two mouse strains (C57BL/6J; C5BL/KsJ) with different sensitivities of the b-cells to hyperglycaemia in vivo. J Endocrinol 1992;136:289–296.

    Article  Google Scholar 

  33. Ling Z, Pipeleers DG. Prolonged exposure of human 13-cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest 1996;98:2805–2812.

    Google Scholar 

  34. Zhang HJ, Walseth TF, Robertson RP. Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes 1989;38:44–8.

    Google Scholar 

  35. Kilpatrick ED, Robertson RP. Differentiation between glucose-induced desensitization of insulin secretion and b-cell exhaustion in the HIT-115 cell line. Diabetes 1998;47:606–611.

    Article  PubMed  CAS  Google Scholar 

  36. Robertson RP, Zhang H-J, Pyzdrowski KL, Walseth TF. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest 1992;90:320–325.

    Article  PubMed  CAS  Google Scholar 

  37. Olson LK, Redmon JB, Towle HC, Robertson RP. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest 1993;92:514–519.

    Article  PubMed  CAS  Google Scholar 

  38. Olson LK, Sharma A, Peshavaria M, et al. Reduction of insulin gene transcription in HIT-T15 f1- cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF1 transcription factor expression. Proc Natl Acad Sci USA 1995;92:9127–9131.

    Article  PubMed  CAS  Google Scholar 

  39. Sharma A, Olson LK, Robertson RP, Stein R. The reduction of insulin gene transcription in HIT-T15 ß-cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol Endocrinol 1995; 9:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  40. Harmon JS, Tanaka Y, Olson LK, Robertson RP. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity. Diabetes 1998;47:900–904.

    Google Scholar 

  41. Moran A, Zhang HJ, Olson LK, Harmon JS, Poitout V, Robertson RP. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest 1997;99:534–9.

    Article  PubMed  CAS  Google Scholar 

  42. Poitout V, Olson LK, Robertson RP. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J Clin Invest 1996;97:1041–6.

    Article  PubMed  CAS  Google Scholar 

  43. Eizirik DL, Korbutt GS, Hellerstrom C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest 1992;90:1263–8.

    Article  PubMed  CAS  Google Scholar 

  44. Olson LK, Qian J, Poitout V. Glucose rapidly and reversibly decreases INS-1 cell insulin gene transcription via decrements in STF-1 and Cl activator transcription factor activity. Mol Endocrinol 1998;12:207–19.

    Article  PubMed  CAS  Google Scholar 

  45. Lu M, Seufert J, Habener JF. Pancreatic beta-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein beta. Inhibitory interactions with basic helix-loop-helix transcription factor E47. J Biol Chem 1997;272:28349–59.

    Article  PubMed  CAS  Google Scholar 

  46. Seufert 1, Weir GC, Habener JF. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus. J Clin Invest 1998;01:2528–39.

    Google Scholar 

  47. Schmeltz R, Wendorff HJ, Field JE. Effect of control of blood glucose on plasma insulin responses to various stimuli in secondary failures to oral hypoglycemic agents and in newly diagnosed, maturity onset, ketosis-resistant diabetics. J Clin Endocrinol Metab 1978;46:519–27.

    Article  PubMed  CAS  Google Scholar 

  48. Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes 1985;34:222–34.

    Article  PubMed  CAS  Google Scholar 

  49. Vague P, Moulin JP. The defective glucose sensitivity of the p-cell in non insulin dependent diabetes. Improvement after twenty hours of normoglycaemia. Metabolism 1982;31:139–42.

    Article  PubMed  CAS  Google Scholar 

  50. Flax H, Matthews DR, Levy JC, Coppack SW, Turner RC. No glucotoxicity after 53 hours of 6.0 mmol/l hyperglycaemia in normal man. Diabetologia 1991;34:570–5.

    Article  PubMed  CAS  Google Scholar 

  51. Giddings SJ, Chirgwin J, Permutt MA. Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes 1982;31:624–9.

    Article  PubMed  CAS  Google Scholar 

  52. Welsh M, Nielsen DA, MacKrell Ai, Steiner DF. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem 1985;260:13590–4.

    PubMed  CAS  Google Scholar 

  53. Koranyi L, James DE, Kraegen EW, Permutt MA. Feedback inhibition of insulin gene expression by insulin. J Clin Invest 1992;89:432–6.

    Article  PubMed  CAS  Google Scholar 

  54. Philippe J, Pacheco I, Meda P. Insulin gene transcription is decreased rapidly by lowering glucose concentrations in rat islet cells. Diabetes 1994;43:523–8.

    Article  PubMed  CAS  Google Scholar 

  55. Petersen HV, Peshavaria M, Pedersen AA, et al. Glucose stimulates the activation domain potential of the PDX-I homeodomain transcription factor. FEES Letters 1998;431:362–6.

    Article  CAS  Google Scholar 

  56. Leibiger B, Moede T, Schwarz T, et al. Short-term regulation of insulin gene transcription by glucose. Proc Natl Acad Sci USA 1998;95:9307–12.

    Article  PubMed  CAS  Google Scholar 

  57. Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RFL, Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells [In Process Citation]. J Biol Chem 1999;274:1011–6.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang HJ, Petersen B, Robertson RP. Variable regulation by insulin of insulin gene expression in HIT-T15 cells. Diabetologia 1994;37:559–66.

    Article  PubMed  CAS  Google Scholar 

  59. Santerre RF, Cook RA, Crisel RM, et al. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Mad Sci USA 1981;78:4339–43.

    Article  CAS  Google Scholar 

  60. Robertson RP, Tsai P, Little SA, Zhang HJ, Walseth TF. Receptor-mediated adenylate cyclasecoupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes 1987;36:104753.

    Google Scholar 

  61. Boam DS, Clark AR, Docherty K. Positive and negative regulation of the human insulin gene by multiple trans-acting factors. J Biol Chem 1990;265:8285–96.

    PubMed  CAS  Google Scholar 

  62. German M, Ashcroft S, Docherty K, et al. The insulin gene promoter. A simplified nomenclature [letter]. Diabetes 1995;44:1002–4.

    PubMed  CAS  Google Scholar 

  63. Efrat S, Linde S, Kofod H, et al. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 1988;85:9037–41.

    Article  PubMed  CAS  Google Scholar 

  64. Powers AC, Efrat S, Mojsov S, Spector D, Habener JF, Hanahan D. Proglucagon processing similar to normal islets in pancreatic alpha-like cell line derived from transgenic mouse tumor. Diabetes 1990;39:406–14.

    Article  PubMed  CAS  Google Scholar 

  65. Sacchi G, Zhang H-J, Robertson RP. Glucsoe toxicity and alpha cell function. Diabetologia 1996;42:A13.

    Google Scholar 

  66. Briaud I, Rouault C, Reach G, Poitout V. Long-term exposure of isolated rat islets to supraphysiologic glucose concentrations decreases insulin mRNA levels. Metabolism 1999;48:319323.

    Google Scholar 

  67. Tokuyama Y, Sturis J, DePaoli AM, et al. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 1995;44:1447–57.

    Article  PubMed  CAS  Google Scholar 

  68. Sreenan S, Sturis J, Pugh W, Burant CF, Polonsky KS. Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol l996;271:E742–7.

    Google Scholar 

  69. Ohtani 1G, Shimizu H, Sato N, Mori M. Troglitazone (CS-045) inhibits beta-cell proliferation rate following stimulation of insulin secretion in HIT-T 15 cells. Endocrinology 1998;139:172–8.

    Article  Google Scholar 

  70. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998;47:358–64.

    Google Scholar 

  71. Wang MY, Koyama K, Shimabukuro M, Mangelsdorf D, Newgard CB, Unger RH. Overexpression of leptin receptors in pancreatic islets of Zucker diabetic fatty rats restores GLUT-2, glucokinase, and glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 1998;95:11921–6.

    Article  PubMed  CAS  Google Scholar 

  72. Harmon JD, Oseid EA, Gleason CE, Tanaka Y, Hunter-Berger KK, Robertson RP. Prevention of hyperglycemia and glucotoxic effects on insulin gene expression by troglitazone in ZDF rats. J Invest Med 1999;47:29A.

    Google Scholar 

  73. Zhou YT, Shimabukuro M, Lee Y, et al. Enhanced de novo lipogenesis in the leptin-unresponsive pancreatic islets of prediabetic Zucker diabetic fatty rats: role in the pathogenesis of lipotoxic diabetes. Diabetes 1998;47:1904–8.

    Article  PubMed  CAS  Google Scholar 

  74. Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 1997;272:30261–9.

    Article  PubMed  CAS  Google Scholar 

  75. Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998;273:3547–50.

    Article  PubMed  CAS  Google Scholar 

  76. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ’autoxidative glycosylation’ in diabetes. Biochem J 1987;245:243–250.

    PubMed  CAS  Google Scholar 

  77. Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 1995;38:201–10.

    Article  PubMed  CAS  Google Scholar 

  78. Matsuoka T-a, Kajimoto Y, Watada H, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 1997;99:144–150.

    Google Scholar 

  79. Traverso N, Menini S, Cosso L, et al. Immunological evidence for increased oxidative stress in diabetic rats. Diabetologia 1998;41:265–70.

    Article  PubMed  CAS  Google Scholar 

  80. Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998;41:1355–60.

    Article  PubMed  CAS  Google Scholar 

  81. Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 1997;38:205–27.

    Article  PubMed  CAS  Google Scholar 

  82. Pieper GM, Siebeneich W. Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol 1998;32:101–5.

    Article  PubMed  CAS  Google Scholar 

  83. Tanaka Y, Gleason CE, Oseid EA, et al. Prevention of glucose toxicity in HIT-T15 cells and ZDF rats by an antioxidant, N-acetyl-l-cysteine. Proc Natl Acad Sci USA 1999;96:10857–62.

    Article  PubMed  CAS  Google Scholar 

  84. Giardino I, Fard AK, Hatchell DL, Brownlee M. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998;47:1114–20.

    Google Scholar 

  85. Tajiri Y, Moller C, Grill V. Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits ß-cell function. Endocrinology 1997;138:273–80.

    Article  PubMed  CAS  Google Scholar 

  86. Purrello F, Vetri M, Gatta C, Gullo D, Vigneri R. Effects of high glucose on insulin secretion by isolated rat islets and purified beta-cells and possible role of glycosylation. Diabetes 1989;38:141–722.

    Google Scholar 

  87. Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci USA 1984;81:105–9.

    Article  PubMed  CAS  Google Scholar 

  88. Fujiwara T, Ohsawa T, Takahashi S, et al. Troglitazone, a new antidiabetic agent possessing radical scavenging ability, improved decreased skin blood flow in diabetic rats. Life Sci 1998;63:2039–47.

    Article  PubMed  CAS  Google Scholar 

  89. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robertson, R.P. et al. (2001). Glucose Toxicity of the Pancreatic ß-Cell. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics