Skip to main content

Abstract

Since the wider adoption of LL process in industry, much research has been carried out to develop prototypes with higher strength and accuracy [14]. The nature and origin of distortion in the LL-built part has been well studied and documented [58]. Recent R&D efforts in rapid prototyping have focused on the development of techniques for the fabrication of functional and semifunctional parts based on metal composites utilizing direct laser sintering techniques [9] or through metal infiltration processes [10,11] on the fabricated rapid prototype. The purpose of most reinforcements, such as glass fiber and ceramic power, is to increase the tensile strength and hardness. Work has also been carried out to improve the strength of LL parts by embedding continuous fiber tows into the fabricated part [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Cheah, J.Y.H. Fuh, A.Y.C. Nee, et al, J. Mater. Proc. Techn., Vol. 67 (1997), 41.

    Article  Google Scholar 

  2. C. Decker and K. Moussa, J. Coatings Techn., Vol. 65(819), (1993), 49.

    CAS  Google Scholar 

  3. C. Decker and K. Moussa, J. Polym. Sci., Polymer Lett. Ed., Vol. 27 (1989), 347.

    Article  CAS  Google Scholar 

  4. P. Karrer, S. Corbel, J.C. Andre, and D.J. Lougnot, J. Polym. Sci., Polymer Chem., Vol. 30 (13), (1992), 2715.

    Article  CAS  Google Scholar 

  5. L. Lu, J.Y.H. Fuh, A.Y.C. Nee, E.T. Kang, T. Miyazawa, and CM. Cheah, Mater. Res. Bulle., Vol. 30(12), (1995), 1561.

    Article  CAS  Google Scholar 

  6. G. Bugeda, M. Gervera, RP. J., MDB University Press, University of Nottingham, Nottingham, UK, Vol. 1(2), (1995), 13.

    Google Scholar 

  7. B. Wiedemann, K.H. Dusel, and J. Eschel, Rapid Prototyping J., MDB University Press, University of Nottingham, Nottingham, UK, Vol. 1 (3), (1995), 17.

    Article  Google Scholar 

  8. C.C. Chen, and P.A. Sullivan, Proc. of the 6th Inter. Conf. on Rapid Prototyping, Dayton, OH, (1995), 153.

    Google Scholar 

  9. S. Das, N. Harlan, JJ. Beaman, D.L. Bourell, Proc. of Solid Freeform Fabrication Symposium, UOT, Austin, Texas, (1996), 89.

    Google Scholar 

  10. M. Wohlert, D. Bourell, Proc. Solid Freeform Fabrication Symposium, UOT, Austin, Texas, (1996), 79.

    Google Scholar 

  11. U. Hejmadi, K. McAlea, Proc. Solid Freeform Fabrication Symposium, UOT, Austin, Texas, (1996), 97.

    Google Scholar 

  12. C. Greer, J. McLaurin, A.A. Ogale, Proc. Solid Freeform Fabrication Symposium, UOT, Austin, Texas, (1996), 307.

    Google Scholar 

  13. P.F. Jacobs, RP. and Manuf: Fundamentals of Stereolithography, 1st ed., Society of Manufacturing Engineers, Dearborn, Michigan, (1992).

    Google Scholar 

  14. CM. Cheah, PhD. Dissertation, national University of Singapore, (2001).

    Google Scholar 

  15. D. Hull, An Intr. to Comp. Mater., Cambridge University Press, ed. 2 (1981).

    Google Scholar 

  16. J.C. Halpin, J.L. Kardos, Polym. Eng. Sci., Vol. 18 (6), (1978), 496.

    Article  CAS  Google Scholar 

  17. J.E. Ashton, J.C. Halpin, P.H. Petit, Primer on Composite Analysis, Technomic Publishing Co., Ch. 5 (1969).

    Google Scholar 

  18. J.C. Halpin, J.L. Kardos, Polym. Eng. Sci., Vol. 16, (1976), 34.

    Google Scholar 

  19. P.E. Chen, Polym. Eng. Sci., Vol. 11, (1971), 51.

    Article  CAS  Google Scholar 

  20. R.M. Barker, T.F. MacLaughlin, J. Comp. Mater., Vol. 5 (1971), 49.

    Google Scholar 

  21. V.R. Riley, J. Comp. Mater., Vol. 2, (1968), 436.

    Article  Google Scholar 

  22. R.F. Gibson, Principles of Comp. Mater. Mech., McGraw-Hill, (1994).

    Google Scholar 

  23. H.L. Cox, British J. of Appl. Phys., Vol. 3, (1952), 72.

    Article  Google Scholar 

  24. A. Kelly, A., W.R. Tyson, J. Mech. Phys. of Solids, Vol. 13, (1965), 329.

    Article  CAS  Google Scholar 

  25. H. Krenchel, Fiber Reinforcement, Copenhagen, Akademisk Forlag (1964).

    Google Scholar 

  26. A. Kelly, W.R. Tyson, High Strength Material, (1965), 578.

    Google Scholar 

  27. D.K. Hale, A. Kelly, Annual Rev. Mater. Sci., Vol. 2, (1972), 405.

    Article  CAS  Google Scholar 

  28. C. M. Cheah, RP. J., Vol.5 (3), (1999), 112.

    Google Scholar 

  29. Solid Ground Curing, Cubital, Ltd., Raansna, Israel (2001), http://www.cubital.com.

  30. SCR-310, Brand Name of UV Curable Resin from Nippon Synthetic Rubber Ltd., Japan, (1995).

    Google Scholar 

  31. Technical brochure for AEROSIL, Fumed Silica, Degussa, Germany, 1997.

    Google Scholar 

  32. C.S. Wen, The Fundamentals of AEROSIL Dynamics, World Scientific Publishing Co. Inc., New Jersey, (1996).

    Book  Google Scholar 

  33. Y.S. Lim, Y.S. Wong J.Y.H. Fuh, T. Miyazaw, Proc. of the 8 th European Confer. on RP. and Manuf., (1999), 313–24.

    Google Scholar 

  34. J.Y.H. Fuh, Y.S. Wong, Y.S. Lim, T. Miyazawa, A.Y.C. Nee, and H.T. Loh, Proc of The 8 th Inter. Confer. on RP., (2000), 123.

    Google Scholar 

  35. Y.S. Lim, MEng Thesis, National University of Singapore, (2001).

    Google Scholar 

  36. T. Miyazawa, PhD Dissertation, National University of Singapore (2001).

    Google Scholar 

  37. J.P. Kurth, I. Meyvaert, P. Vandormae, Proc. of the 7 th Inter. Conf. On Rapid Prototyping, San Francisco, (1997), 218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lü, L., Fuh, J.Y.H., Wong, Y.S. (2001). Improvements of Mechanical Properties by Reinforcements. In: Laser-Induced Materials and Processes for Rapid Prototyping. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1469-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1469-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7400-8

  • Online ISBN: 978-1-4615-1469-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics