Skip to main content

Mammalian Clock Genetics

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

  • 582 Accesses

Abstract

Very early in the modern history of biological rhythm research, Erwin Bünning demonstrated that the circadian period was under genetic control (Bünning, 1935). The experiments not only verified the biological (endogenous) nature of rhythm generation, but also demonstrated the innate determination of circadian periodicity. At the start of a new millennium, the 65 years of research into clock genetics until recently had brought out only a rudimentary understanding of the direct role of genes in this process. Nonetheless, with the discovery of timeless in Drosophila, which has provided new insight into the activity and attributes of clock genes (see Chapter 14), the cloning of Clock in the mouse (King et al., 1997b; Vitaterna et al., 1994), and the identification of per homologues in the mammalian suprachiasmatic nucleus (SCN) (Sun et al., 1997; Tei et al., 1997), the field is poised for a significant assault on the genetic mechanisms of rhythm generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, H., Kida, M., Tsuji, K, & Mano, T. (1989). Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiology and Behavior, 45, 397–401.

    PubMed  CAS  Google Scholar 

  • Abe, H., Honma, S., Ikeda, M., Tanahashi, Y., Namihira, K, & Honma, K. (1998). Expression of a novel bHLH/PAS related gene, BMAL1, in the rat brain. Society for Research on Biological Rhythms, 10, 49.

    Google Scholar 

  • Abe, H., Honma, S., Honma, K, Suzuki, T., & Ebihara, S. (1999). Functional diversities of two activity components of circadian rhythm in genetical splitting mice (CS strain). Journal of Comparative Physiology, A184, 243–251.

    Google Scholar 

  • Albrecht, U., Sun, Z. S., Eichele, G., Sc Lee, C. C. (1997). A differential response of two putative mammalian circadian regulators, mperl and mper2, to light. Cell, 91, 1055–1064.

    PubMed  CAS  Google Scholar 

  • Antoch, M. P., Song, E.J., Chang, A. M., Vitaterna, M. H., Zhao, Y., Wilsbacher, L. D., Sangoram, A. M., King, D. P., Pinto, L. H., Sc Takahashi, J. S. (1997). Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell, 89, 655–667.

    PubMed  CAS  Google Scholar 

  • Antoniadis, E. A., Ko, C. H., Ralph, M. R., & McDonald, R. J. (2000). Circadian rhythms, aging and memory. Behavior and Brain Research, 111, 25–37.

    CAS  Google Scholar 

  • Bauer, M. S. (1990). Intensity and precision of circadian wheel running in three outbred rat strains. Physiology and Behavior, 47, 397–401.

    PubMed  CAS  Google Scholar 

  • Beau, J. (1988). Mise en evidence de correlates polygeniques des caracteristiques du rythme de l’activité chez un Mammifere: Etude de deux lignées de souris consanguines C57 BL/6 et BALB/c By. Comptes Rendus l’Academie de Science III, 307, 37–40.

    Google Scholar 

  • Beau, J. (1991). Activity rhythms in inbred mice. I. Genetic analysis with recombinant inbred strains. Behavioral Genetics, 21, 117–129.

    CAS  Google Scholar 

  • Beau, J., Levi, F., & Morra, R. (1990). The influence of the athymic mutation nude on the components of the circadian rhythm of activity in mice. Chronobiology International, 7, 371–376.

    PubMed  CAS  Google Scholar 

  • Berg, S., Dunger, A., Vogt, L., Kloting, I., Sc Schmidt, S. (1997). Circadian variations in blood pressure and heart rate in diabetes prone and resistant rat strains compared with spontaneously hypertensive rats. Experimental and Clinical Endocrinology, 105, 7–9.

    CAS  Google Scholar 

  • Brown, M. H., & Nunez, A. A. (1989). Vasopressin-deficient rats show a reduced amplitude of the circadian sleep rhythm. Physiology and Behavior, 46, 759–762.

    PubMed  CAS  Google Scholar 

  • Brown, W. R., Furukawa, R. D., & Ramsay, C. A. (1988). Circadian rhythms are suppressed in hyper-proliferative mouse epidermis. Cell Tissue Kinetics, 21, 159–167.

    CAS  Google Scholar 

  • Bult, A., Hiestand, L., Van der Zee, R., & Lynch, C. (1993). Circadian rhythms differ between selected mouse lines: A model to study the role of vsopressin neurons in the suprachiasmatic nuclei. Brain Research Bulletin, 32, 623–627.

    PubMed  CAS  Google Scholar 

  • Banning, E. (1935). Zur kenntnis der erblichen tagesperiodiztat bei den primarblattern von Phaseolus multii lorus. Jahrbucher für wissenschaftliche Botanik, 81, 411–418.

    Google Scholar 

  • Burrows, H. L., Nakajima, M., Lesh, J. S., Goosens, K. A., Samuelson, L. C., Inui, A., Camper, S. A., Sc Seashotz, A. F. (1998). Excess corticotropin releasing hormone-binding protein in the hypothalamicpituitary—adrenal axis in transgenic mice. Journal of Clinical Investigation, 101, 1439–1447.

    PubMed  CAS  Google Scholar 

  • Buttner, D., & Wollnick, F. (1984). Strain-differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat. Behavioral Genetics, 14, 137–152.

    CAS  Google Scholar 

  • Cai, A., Lehman, M. N., Lloyd, J. M., & Wise, P. M. (1997). Transplantation of fetal suprachiasmatic nuclei into middle-aged rats restores diurnal Fos expression in host. American Journal of Physiology, 272, R422–R428.

    PubMed  CAS  Google Scholar 

  • Castellano, C., Puglisi-Allegra, S., Renzi, P., & Oliviero, A. (1985). Genetic differences in daily rhythms of pain sensitivity in mice. Pharmacology and Biochemistry of Behavior, 23, 91–92.

    CAS  Google Scholar 

  • Chang, A.-M., Vitaterna, M. H., Turek, F. W., & Takahashi, J. S. (1998). Altered response to constant light conditions in clock mutant mice. Society for Research on Biological Rhythms Abstracts, 10, 50.

    Google Scholar 

  • Connolly, M., & Lynch, C. (1981). Circadian variation of strain differences in body temperature and activity in mice. Physiology and Behavior, 27, 1045–1049.

    PubMed  CAS  Google Scholar 

  • Connolly, M., & Lynch, C. (1983). Classical genetic analysis of circadian body temperature rhythms in mice. Behavioral Genetics, 13, 491–500.

    CAS  Google Scholar 

  • Diez-Noguera, A. C. T., Ribot, M., & Torralba, A. (1989). Hereditary nature of the pattern of the motor activity circadian rhythm in mice. Physiology and Behavior, 45, 307–311.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., Tsuji, K., & Kondo, K. (1978). Strain differences of the mouse’s free-running circadian rhythm in continuous darkness. Physiology and Behavior, 20, 795–799.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., Marks, T., Hudson, D.J., & Menaker, M. (1986). Genetic control of melatonin synthesis in the pineal gland of the mouse. Science, 231, 491–493.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., Hudson, D.J., Marks, T., & Menaker, M. (1987). Pineal indole metabolism in the mouse. Brain Research, 416, 136–140.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., Goto, M., & Oshima, I. (1988a). The phase-shifting effects of pentobarbital on the circadian rhythm of locomotor activity: Strain differences. Brain Research, 454, 404–407.

    CAS  Google Scholar 

  • Ebihara, S., Goto, M., & Oshima, I. (1988b). Different responses of the circadian system to GABA-active drugs in two strains of mice. Journal of Biological Rhythms, 3, 357–364.

    CAS  Google Scholar 

  • Edgar, D. M., Kilduff, T. S., Martin, C. E., & Dement, W. C. (1991). Influence of running wheel on freerunning sleep—wake and drinking circadian rhythms in mice. Physiology and Behavior, 50, 373–378.

    PubMed  CAS  Google Scholar 

  • Faradji-Prevautel, H., Cespuglio, R., & Jouvet, M. (1990). Circadian rest—activity rhythms in the an-ophthalmic, monocular and binocular ZRDCT/An mice. Retinal and serotonergic influences. Brain Research, 526, 207–216.

    PubMed  CAS  Google Scholar 

  • Ferraro, J. S., Dorsett, J. A., Wagner, T. E., Yun, J. S., & Bartke, A. (1994). Overexpression of growth hormone genes in transgenic mice shortens free-running periods in constant light. Biological Rhythms Research, 25, 315–328.

    CAS  Google Scholar 

  • Foster, R. G., Provencio, I., Hudson, D. J., Fiske, S., De Grip, W., Sc Menaker, M. (1991). Circadian photo-reception in the retinally degenerate mouse (rd/rd). Journal of Comparative Physiology A, 149, 39–50.

    Google Scholar 

  • Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., & Weitz, C.J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280,1564–1569.

    PubMed  CAS  Google Scholar 

  • Gerlai, R. (1996). Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends in Neuroscience, 19, 177–181.

    CAS  Google Scholar 

  • Golombek, D. A., & Ralph, M. R. (1994). KN-62, an inhibitor of Cat+/calmodulin kinase II, attenuates circadian responses to light. Neuroreport, 13, 1638–1640.

    Google Scholar 

  • Golombek, D. A., & Ralph, M. R. (1995). Circadian responses to light: The calmodulin connection. Neuroscience Letters, 192, 101–104.

    PubMed  CAS  Google Scholar 

  • Golombek, D. A., Hurd, M. W., Lee, K-F., & Ralph, M. R. (1996). Mice lacking the p75NOFR receptor exhibit abnormal circadian responses to light. Biological Rhythms Research, 27, 409–418.

    CAS  Google Scholar 

  • Goto, M., Oshima, I., Tomita, T., & Ebihara, S. (1989). Melatonin content of the pineal gland in different mouse strains. Journal of Pineal Research, 7, 195–204.

    PubMed  CAS  Google Scholar 

  • Goto, M., Oshima, I., Hasegawa, M., & Ebihara, S. (1994). The locus controlling pineal serotonin N-acetyltransferase activity (Nat-2) is located on mouse chromosome 11. Molecular Brain Research, 21, 349–354.

    PubMed  CAS  Google Scholar 

  • Guastavino, J. M., Bertin, R., & Portet, R. (1991). Effects of the rearing temperature on the temporal feeding pattern of the staggerer mutant mouse. Physiology and Behavior, 49, 405–409.

    PubMed  CAS  Google Scholar 

  • Hafen, T., & Wollnick, F. (1994). Effect of lithium carbonate on activity level and circadian period in different strains of rats. Pharmacology and Biochemistry of Behavior, 49, 975–983.

    CAS  Google Scholar 

  • Hegmann, J., & Possidente, B. (1981). Estimating genetic correlations from inbred strains. Behavioral Genetics, 11, 103–114.

    CAS  Google Scholar 

  • Hofstetter, J., Mayeda, A., Possidente, B., & Nurnberger, J. J. (1995). Quantitative trait loci (QTL) for circadian rhythms of locomotor activity in mice. Behavioral Genetics, 52, 545–556.

    Google Scholar 

  • Honrado, G. I., Johnson, R. S., Golombek, D. A., Spiegelman, B. M., Papaioannou, V. E., & Ralph, M. R. (1996). The circadian system of c-fos deficient mice. Journal of Comparative Physiology A, 178, 563–570.

    CAS  Google Scholar 

  • Hotz, M. M., Connolly, M. S., & Lynch, C. B. (1987). Adaptation to daily meal-timing and its effect on circadian temperature rhythms in two inbred strains of mice. Behavioral Genetics, 17, 37–51.

    CAS  Google Scholar 

  • Hurd, M. W., & Ralph, M. R. (1998). The significance of circadian organization for longevity in the golden hamster. Journal of Biological Rhythms, 13, 430–436.

    PubMed  CAS  Google Scholar 

  • Hurd, M. W., Zimmer, K A, Lehman, M. N., & Ralph, M. R. (1995). Circadian locomotor rhythms in aged hamsters following suprachiasmatic transplant. American Journal of Physiology, 269, R958-R968.

    PubMed  CAS  Google Scholar 

  • Ibuka, N. (1987). Circadian rhythms in sleep—wakefulness and wheel-running activity in a congenitally anophthalmic rat mutant. Physiology and Behavior, 39, 321–326.

    PubMed  CAS  Google Scholar 

  • Ikeda, M., & Nomura, M. (1997). cDNA cloning and tissue-specific expression of a novel basic helixloop—helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochemical and Biophysical Research Communications, 233, 258–264.

    PubMed  CAS  Google Scholar 

  • Inoue, I., Yanai, K, Kitamura, D., Taniuchi, Y., Kobayashi, T., Nimura, K, Watanabe, T., & Watanabe, T. (1996). Impaired locomotor activity and exploratory behavior in mice lacking histamine Hl receptors. Proceedings of the National Academy of Sciences of the USA, 93, 13316–13320.

    PubMed  CAS  Google Scholar 

  • Johnson, R. S., Spiegelman, B. M., & Papaioannou, V. E. (1992). Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell, 71, 577–586.

    PubMed  CAS  Google Scholar 

  • Kempf, E., Mandel, P., Oliviero, A., & Puglisi-Allegra, S. (1982). Circadian variations in noradrenaline, 5-hydroxytryptamine and dopamine in specific brain areas of C57B1/6 and BALB/c mice. Brain Research, 232, 472–478.

    PubMed  CAS  Google Scholar 

  • Kennaway, D.J. (1994). Effect of phase advance of the light/dark cycle on pineal function and circadian running activity in individual rats. Brain Research Bulletin, 33, 639–644.

    PubMed  CAS  Google Scholar 

  • Kennedy, G. A., Hudson, R., & Armstrong, S. M. (1994). Circadian wheel running activity rhythms in two strains of domestic rabbit. Physiology and Behavior, 55, 385–389.

    PubMed  CAS  Google Scholar 

  • Kilduff, T. S., Vergrinic, C., Lee, S. L., Millrandt, J. D., Mikkelson, J. D., O’Hara, B. F., & Heller, H. C. (1998). Characterization of the circadian system of NGFI-A and NGFI-A/NGFI-B deficient mice. Journal of Biological Rhythms, 13, 347–357.

    PubMed  CAS  Google Scholar 

  • King, D. P., Vitaterna, M. H., Chang, A. M., Dove, W. F., Pinto, L. H., Turek, E W., Sc Takahashi, J. S. (1997a). The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics, 146, 1049–1060.

    CAS  Google Scholar 

  • King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., Steeves, T. D. L., Vitaterna, M. H., Kornhauser, J. M., Lowery, P. L., Turek, E W., & Takahashi, J. S. (1997b). Positional cloning of the mouse circadian Clock gene. Cell, 89, 641–653.

    CAS  Google Scholar 

  • Konopka, R. J., & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 68, 2112–2116.

    PubMed  CAS  Google Scholar 

  • Kopp, C., Vogel, E., Rettori, M. C., Delagrange, P., Guardiola-Lemaitre, B., & Misslin, R. (1998). Effects of daylight cycle reversal on locomotor activity in several inbred strains of mice. Physiology and Behavior, 63, 577–585.

    PubMed  CAS  Google Scholar 

  • Kornhauser, J. M., Mayo, K. E., & Takahashi, J. S. (1992). Immediate-early gene expression in a mammalian circadian pacemaker: The suprachiasmatic nucleus. In M. Young (Ed.), Molecular genetics of circadian rhythms (pp. 271–307). New York: Marcel Dekker.

    Google Scholar 

  • Kozak, W., Zheng, H., Conn, C. A., Soszynski, D., van der Ploeg, D. H., & Kluger, M.J. (1995). Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. American Journal of Physiology, 269, R969–R977.

    PubMed  CAS  Google Scholar 

  • Laemle, L. K., Ottenweller, J. E., & Fugaro, C. (1995). Diurnal variations in vasoactive intestinal polypeptide-like immunoreactivity in the suprachiasmatic nucleus of congenitally anophthalmic mice. Brain Research, 688, 203–208.

    PubMed  CAS  Google Scholar 

  • Lemmer, B., Witte, K., Makabe, T., Ganten, D., & Mattes, A. (1994). Effects of enalaprilat on circadian profiles in blood pressure and heart rate of spontaneously and transgenic hypertensive rats. Journal of Cardiovascular Pharmacology, 23, 311–314.

    PubMed  CAS  Google Scholar 

  • Liang, E Q., Allen, G., & Earnest, D.J. (2000). Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light. Journal of Neuroscience, 20, 2978–2987.

    PubMed  CAS  Google Scholar 

  • Liu, C., Weaver, D. R., Jin, X., Shearman, L. P., Pieschl, R. L., Gribkof, V. K., & Reppert, S. M. (1997). Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 19, 91–102.

    PubMed  CAS  Google Scholar 

  • Lopez-Molina, L., Conquet, E, Dubois-Dauphin, M., & Schibler, U. (1997). The DBP gene is expressed according to the circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO Journal, 16, 6762–6771.

    PubMed  CAS  Google Scholar 

  • Lowrey, P. L., & Takahashi, J. S. (1998). Identification of genetic markers linked to the Syrian hamster tau mutation by genetically directed representational difference analysis. Society for Research on Biological Rhythms Abstracts, 10, 46.

    Google Scholar 

  • Lowrey, P. L., & Takahashi, J. S. (2000). Genetics of the mammalian circadian system. Annual Review of Genetics, 34, 533–562.

    PubMed  CAS  Google Scholar 

  • Lu, Y. M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M., & Roder, J. C. (1997). Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CAl long-term potentiation (LTP) but normal CA3 LTP. Journal of Neuroscience, 17, 5196–5205.

    PubMed  CAS  Google Scholar 

  • Lucas, L. A., & Eleftheriou, B. E. (1980). Circadian variation in concentrations of testosterone in the plasma of male mice: A difference between BALB/cBy and C57BL/6By inbred strains. Journal of Endocrinology, 87, 37–46.

    PubMed  CAS  Google Scholar 

  • Mayeda, A., Hofstetter, J., Belknap, J., & Nurnberger, J. J. (1996). Hypothetical quantitative trait loci for circadian period of locomotor activity in CXB recombinant inbred strains of mice. Behavioral Genetics, 26, 505–511.

    CAS  Google Scholar 

  • Minakami, K (1994). Brain monoamines and behavior in hyperammonemic sparse-fur mice. Nippon Yakurigaku Zasshi, 103, 219–229.

    PubMed  CAS  Google Scholar 

  • Morris, M. E., Viswanathan, N., Kuhlman, S., Davis, F. C., & Weitz, C.J. (1998). A screen for genes induced in the suprachiasmatic nucleus by light. Science, 279, 1544–1577.

    PubMed  CAS  Google Scholar 

  • Mrosovsky, N., Salmon, P. A, Menaker, M., & Ralph, M. R. (1992). Nonphotic phase shifting in hamster clock mutants. Journal of Biological Rhythms, 7, 41–49.

    PubMed  CAS  Google Scholar 

  • Murphy, H. M., Wideman, C. H., & Nazdam, G. R. (1996). The interaction of vasopressin and the photic oscillator in circadian rhythms. Peptides, 17, 467–475.

    PubMed  CAS  Google Scholar 

  • Myamoto, M. (1997). Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMPIO. Experimental Gerontology, 32, 139–148.

    Google Scholar 

  • Osiel, S., Golombek, D. A., & Ralph, M. R. (1998). Conservation of locomotor behavior in the hamster: Effects of light cycle and a circadian period mutation. Physiology and Behavior, 65, 123–131.

    PubMed  CAS  Google Scholar 

  • Park, H. T., Kang, E. K, & Bae, K. W. (1997). Light regulates Homer mRNA expression in the rat suprachiasmatic nucleus. Molecular Brain Research, 52, 318–322.

    PubMed  CAS  Google Scholar 

  • Peleg, L., Nesbitt, M., & Ashkenazi, I. (1989). Strain dependent response of circadian rhythms during exposure to continuous illumination. Life Science, 44, 893–900.

    CAS  Google Scholar 

  • Peleg, L., Zvulunov, A., & Ashkenazi, I. (1995). Genetic control of biological rhythms: Independent expression of each rhythm parameter. Life Science, 56, 1143–1149.

    CAS  Google Scholar 

  • Peters, R. V., Zoeller, R. T., Hennessey, A. C., Stopa, E. G., Anderson, G., & Albers, H. E. (1994). The control of circadian rhythms and the levels of vasoactive intestinal peptide mRNA in the suprachiasmatic nucleus are altered in spontaneously hypertensive rats. Brain Research, 639, 217–227.

    PubMed  CAS  Google Scholar 

  • Pickard, G. E., Sollars, P. J., Rinchik, E. M., Nolan, P. M., & Bucan, M. (1995). Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, wheels. Brain Research, 705, 255–266.

    PubMed  CAS  Google Scholar 

  • Plazzi, G., Schutz, Y., Cortelli, P., Provini, F., Heikkila, E., Solieri, L., Lugaresi, E., & Montagna, P. (1997). Motor overactivity and loss of motor circadian rhythm in fatal familial insomnia: An actigraphic study. Sleep, 20, 739–742.

    PubMed  CAS  Google Scholar 

  • Portaluppi, F., Cortelli, P., Avoni, P., Vergnani, L., Maltoni, P., Pavani, A., Sforza, E., Degli Uberti, E. C., Gambetti, P., & Lugaresi, E. (1994). Progressive disruption of the circadian rhythm of melatonin in fatal familial insomnia. Journal of Clinical Endocrinology and Metabolism, 78, 1075–1078.

    PubMed  CAS  Google Scholar 

  • Possidente, B., & Hegmann, J. P. (1980). Circadian complexes: Circadian rhythms under common gene control. Journal of Comparative Physiology B, 139, 121–125.

    Google Scholar 

  • Possidente, B., & Hegmann, J. (1982). Gene differences modify Aschoff’s rule in mice. Physiology and Behavior, 28, 199–200.

    PubMed  CAS  Google Scholar 

  • Possidente, B., & Stephan, F. K. (1988). Circadian period in mice: Analysis of genetic and maternal contributions to inbred strain differences. Behavioral Genetics, 18, 109–117.

    CAS  Google Scholar 

  • Possidente, B., Hegmann, J. P., Carlson, L., & Elder, B. (1982). Pigment mutations associated with altered circadian rhythms in mice. Physiology and Behavior, 28, 389–392.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., & Hurd, M. W. (1996). Pacemaker interactions in the mammalian circadian system. Brazilian Journal of Medical and Biological Research, 29, 77–85.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., & Menaker, M. (1988). A mutation of the circadian system in golden hamsters. Science, 241, 1225–1227.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247, 975–978.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., Hurd, M. W., Takeuchi, J., Melo, L., Mathur, A., & Golombek, D. A. (1996). Regulation and integration in the mammalian circadian system. In R. M. Buijs, A. Kalsbeek, H. J. Romijn, C. M. A. Pennartz, & M. Mirmiran (Eds.), Progress in brain research (pp. 189–201). Amsterdam: Elsevier.

    Google Scholar 

  • Rao, S. H., & Diwan, R. V. (1995). A behavioral profile of bilateral anophthalmic mutant rats. Experimental Animals, 44, 67–69.

    PubMed  CAS  Google Scholar 

  • Reebs, S. G., & Mrosovsky, N. (1989). Effects of wheel running on the circadian activity rhythms of Syrian hamsters: Entrainment and phase response curve. Journal of Biological Rhythms, 4, 39–48.

    PubMed  CAS  Google Scholar 

  • Reinberg, A., Touitou, Y., Restoin, A., Migraine, C., Levi, F., & Montagner, H. (1985). The genetic background of circadian and ultradian patterns of 17-hydroxycorticosteroids: A cross-twin study. Journal of Endocrinology, 105, 247–253.

    PubMed  CAS  Google Scholar 

  • Roesler, W. J., Helgason, C., Gulka, M., & Khandelwal, R. L. (1985). Aberrations in the diurnal rhythms of plasma glucose, plasma insulin, liver glycogen, and hepatic glycogen synthase and phosphorylase activities in genetically diabetic (db/db) mice. Hormones and Metabolism Research, 17, 572–575.

    CAS  Google Scholar 

  • Rosenwasser, A. M., & Plante, L. (1993). Circadian activity rhythms in SHR and WKY rats: Strain differences and effects of clonidine. Physiology and Behavior, 53, 23–29.

    PubMed  CAS  Google Scholar 

  • Roussel, B., Turrillot, P., & Kitahama, K. (1984). Effect of ambient temperature on the sleep-waking cycle in two strains of mice. Brain Research, 294, 67–73.

    PubMed  CAS  Google Scholar 

  • Sanchez-Barcelo, E. J., Megias, M., Verduga, R., & Crespo, D. (1997). Differences between the circadian system of two strains of senescence-accelerated mice (SAM). Physiology and Behavior, 62, 1225–1229.

    PubMed  CAS  Google Scholar 

  • Sanyal, S., & Hawkins, R. K. (1989). Development and degeneration of retina in rds mutant mice: Altered disc shedding pattern in the heterozygotes and its relation to ocular pigmentation. Current Eye Research, 8, 1093–1101.

    PubMed  CAS  Google Scholar 

  • Schwartz, W.J., & Zimmerman, P. (1990). Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. Journal of Neuroscience, 10, 3685–3694.

    PubMed  CAS  Google Scholar 

  • Semikhoskii, A. G., Ball, A. J., Stirland, J. A., Mohammad, Y. N., Bruford, M., Powell, J. F., & Loudon, A. S. I. (1998). Mapping the tau mutation of the Syrian hamster using amplified fragments length polymorphism (AFLP). Society for Research on Biological Rhythms Abstracts, 10, 51.

    Google Scholar 

  • Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. E, Jr., & Reppert, S. M. (1977). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nucleus. Neuron, 19, 1261–1269.

    Google Scholar 

  • Shen, H., Watanabe, M., Tomasiewicz, H., Rutishauser, U., Magnuson, T., & Glass, J. D. (1997). Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. Journal of Neuroscience, 17, 5221–5229.

    PubMed  CAS  Google Scholar 

  • Shibata, S., & Moore, R. Y. (1994). Calmodulin inhibitors produce phase shifts of circadian rhythms in vivo and in vitro. Journal of Biological Rhythms, 9, 27–41.

    PubMed  CAS  Google Scholar 

  • Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J. J., Dunlap, J. C., & Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript. Cell, 91, 1043–1053.

    PubMed  CAS  Google Scholar 

  • Shim, S., Sugita, S., Sugahara, K., & Tanaka, H. (1997). Feeding rhythm and ornithine decarboxylase activity in hereditary microphthalmic rats. Physiology and Behavior, 62, 1365–1369.

    PubMed  CAS  Google Scholar 

  • Shimomura, K, & Menaker, M. (1994). Light-induced phase shifts in tau mutant hamsters. Journal of Biological Rhythms, 9, 97–110.

    PubMed  CAS  Google Scholar 

  • Shimomura, K., Vitaterna, M. H., Low-Zeddies, S. S., Whitely, A. R., & Takahashi, J. S. (1998). Genetic dissection of strain differences in mouse circadian rhythmicity. Society for Research on Biological Rhythms Abstracts, 10, 47.

    Google Scholar 

  • Shiromani, P. J., & Overstreet, D. (1994). Free-running period of circadian rhythms is shorter in rats with a genetically upregulated cholinergic system. Biological Psychiatry, 36, 622–626.

    PubMed  CAS  Google Scholar 

  • Siebert, U., & Wollnick, F. (1991). Wheel-running activity rhythms in two inbred strains of laboratory rats under different photoperiods. Physiology and Behavior, 50, 1137–1143.

    PubMed  CAS  Google Scholar 

  • Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382, 810–813.

    PubMed  CAS  Google Scholar 

  • Sollars, P. J., Ryan, A., Ogilvie, M. D., & Pickard, G. E. (1996). Altered circadian rhythmicity in the Wocko mouse, a hyperactive transgenic mutant. Neuroreport, 7, 1245–1248.

    PubMed  CAS  Google Scholar 

  • Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G., & Lee, C. C. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell, 90, 1003–1011.

    PubMed  CAS  Google Scholar 

  • Takahashi, J. S., Pinto, L. P., & Vitaterna, M. H. (1994). Forward and reverse genetic approaches to behavior in the mouse. Science, 26, 1724–1733.

    Google Scholar 

  • Takumi, T., Matsubara, C., Shigeyoshi, Y., Taguchi, K., Yagita, K., Maebayashi, Y., Sakakida, Y., Okumura, K., Takashim, N., & Okamura, H. (1998). A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells, 3, 167–176.

    PubMed  CAS  Google Scholar 

  • Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M., & Sakaki, Y. (1997). Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature, 389, 512–516.

    PubMed  CAS  Google Scholar 

  • Ticher, A., Sackett-Lundeen, L., Ashkenazi, I. E., & Haus, E. (1994). Human circadian time structure in subjects of different gender and age. Chronobiology International, 11, 349–355.

    PubMed  CAS  Google Scholar 

  • Ticher, A., Zoossman-Diskin, A., Haus, E., Sackett-Lundeen, L., & Ashkenazi, I. E. (1995). Prevalence of genetic versus environmental factors in human female temporal organization. Human Biology, 67, 769–778.

    PubMed  CAS  Google Scholar 

  • Tobler, I., Gaus, S. E., Deboer, T., Achermann, P., Fischer, M., Rulicke, T., Moser, M., Oesch, B., McBride, P. A., & Manson, J. C. (1996). Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature, 380, 639–642.

    PubMed  CAS  Google Scholar 

  • Turek, F. W., Pinto, L., Vitaterna, M., Penev, P., Zee, P. C., & Takahashi, J. S. (1995). Pharmacological and genetic approaches for the study of circadian rhythms in mammals. Frontiers in Neuroendocrinology, 16, 191–223.

    PubMed  CAS  Google Scholar 

  • Valaty, J. L., &Jouvet, M. (1988). Circadian rhythms of slow-wave sleep are in opposite phase in genetically hypoprolactinemic rats. Comptes Rendues de l’Academie de Science III, 307, 789–794.

    Google Scholar 

  • Van Reeth, O., & Turek, F. W. (1989). Stimulated activity mediates phase shifts in the hamster circadian clock induced by light pulses or benzodiazepines. Nature, 339, 49–51.

    PubMed  CAS  Google Scholar 

  • Vitaterna, M. H., & Turek, E. W. (1993). Photoperiodic responses differ among inbred strains of golden hamsters (Mesocricetus auratus). Biology of Reproduction, 49, 496–501.

    PubMed  CAS  Google Scholar 

  • Vitaterna, M. H., Wu, J. C., Turek, F. W., & Pinto, L. H. (1993). Reduced light sensitivity of the circadian clock, in a hypopigmented mouse mutant. Experimental Brain Research, 95, 436–442.

    CAS  Google Scholar 

  • Vitaterna, M. H., King, D. P., Chang, A.-M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, F. W., & Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 264, 719–725.

    PubMed  CAS  Google Scholar 

  • Vitaterna, M. H., Chang, A.-M., King, D. P., Pinto, L. H., Turek, F. W., & Takahashi, J. S. (1996). Heterozygosity at the clock locus alters phase response curves to light. Society for Research on Biological Rhythms, Abstracts, 200, 127.

    Google Scholar 

  • Vogelbaum, M., & Menaker, M. (1992). Temporal chimeras produced by hypothalamic transplants. Journal of Neuroscience, 12, 3619–3627.

    PubMed  CAS  Google Scholar 

  • Wax, T. M. (1977). Effects of age, strain, and illumination intensity on activity and self-selection of light—dark schedules in mice. Journal of Comparative Physiology and Psychology, 91, 51–62.

    CAS  Google Scholar 

  • Weaver, D. R., Liu, C., & Reppert, S. M. (1996). Nature’s knockout: The Mel lb receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Molecular Endocrinology, 10, 1478–1487.

    PubMed  CAS  Google Scholar 

  • Wisor, J. P., & Takahashi, J. S. (1997). Regulation of the vgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock. Journal of Comparative Neurology, 378, 229–238.

    PubMed  CAS  Google Scholar 

  • Wollnick, F. (1991). Strain differences in the pattern and intensity of wheel running activity in laboratory rats. Experientia, 4Z, 593–598.

    Google Scholar 

  • Wollnick, F., Gärtner, K., & Buttner, D. (1987). Genetic analysis of circadian rhythms and ultradian locomotor activity rhythms in laboratory rats. Behavioral Genetics, 17, 167–178.

    Google Scholar 

  • Wollnick, F., Brysch, W., Uhlmann, E., Gillardon, F., Bravo, R., Zimmerman, M., Schlingensiepen, K. H., & Herdegen, T. (1995). Block of c-fos and jun-b expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. European Journal of Neuroscience, 7, 388–393.

    Google Scholar 

  • Yoshimura, T., Nishio, M., Goto, M., & Ebihara, S. (1994). Differences in circadian photosensitivity between retinally degenerate CBA/J mice and normal CBA/N mice (+/+). Journal of Biological Rhythms, 9, 51–60.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., Vitaterna, M. H., Shimomura, K., Giese, K. P., Mayford, M., Silva, A. J., Kandel, E. R., Tonegawa, S., & Takahashi, J. S. (1998). Role of calcium/calmodulin dependent protein kinase II in the circadian system. Society for Research on Biological Rhythms Abstracts, 10, 48.

    Google Scholar 

  • Zylka, M. J., Shearman, L. P., Weaver, D. R., & Reppert, S. M. (1998). Three period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside the brain. Neuron, 20, 1103–1110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ralph, M.R., Vitaterna, M.H. (2001). Mammalian Clock Genetics. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics