Skip to main content

Biochemical and Molecular Mechanisms of Cisplatin Resistance

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 112))

Abstract

According to the DISCOVERY Anticancer Drug Screen of the National Cancer Institute in the USA, the inorganic antitumor agent cisplatin(cisdiammine-dichloro-platinum(II); Figure 1) and its analogs fall into at least 13 clustered regions, each reflecting a distinct mechanism of action1. Many of these analogs have not been investigated in depth to unravel their fundamental mechanism of action. Indeed, almost 30 years after its clinical acceptance as a potent antitumor drug, which has dramatically changed the course of treatment of ovarian, testicular and head and neck cancerscancers2 we are still searching for answers to explain how cisplatin works. There is no doubt, however, that DNA is the primary target of cisplatincancers3 but understanding how signals emanating from the damaged DNA are relayed to the apoptotic or cell death machinery is still a subject of much debate. An understanding of this process can be an important step toward defining mechanisms of resistance, which continues to impede the curative use of cisplatin in the clinic. This impediment can be gleaned from the knowledge that in ovarian cancer, for instance, the initial response rate of up to 70% leads to a 5-year survival rate of only 15-20%cancers4. Indeed, the majority (80-85%) of patients relapse and fail to further treatment with cisplatin as a result of acquired drug resistance. Similarly, in patients with small cell lung cancer,the relapse rate can be as high as 95%5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanimura H, Weinstein J, Ortuzar Wet al.Identification of non-cross resistant platinum compounds among agents submitted to the National Cancer Institute’s (NCI’s) anticancer drug screen using the DISCOVERY computer program (Meeting abstract). Proc Amer Assoc Cancer Res, 36:A1816, 1995.

    Google Scholar 

  2. Prestayko AW, D’Aoust JC, Issell BF, Crooke ST. Cisplatin (cisdiamminedichloroplatinum II). Cancer Treat Rev, 6:17–39, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Roberts JJ, Pera MF, Jr. DNA as a target for anticancer coordination compounds. In: Platinum, Gold, and Other Metal Chemotherapeutic Agents: Chemistry and Biochemistry, SJ Lippard (ed.), American Chemical Society, Washington, DC, 3–25, 1983.

    Chapter  Google Scholar 

  4. Ozols RF. Ovarian cancer: new clinical approaches. Cancer Treat Rev, 18 Suppl A:77–83, 1991.

    Article  PubMed  Google Scholar 

  5. Giaccone G. Clinical perspectives on platinum resistance. Drugs, 59 Suppl 4:9–17, 2000.

    Google Scholar 

  6. Kelland LR, Sharp SY, O’Neill CFet al.Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem, 77:111–115, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Gore M, Fryatt I, Wiltshaw Eet al.Cisplatin/carboplatin cross-resistance in ovarian cancer. Br J Cancer, 60:767–769, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Eisenhauer E, Swerton K, Sturgeon Jet al.Carboplatin therapy for recurrent ovarian carcinoma: National Cancer Institute of Canada experience and a review of the literature. In: P Bunn, R Canetta, R Ozols, M Rozencweig (eds.), Carboplatin: Current Perspectives and Future Directions. W.B. Saunders Company, Philadelphia, PA, 133–140, 1990.

    Google Scholar 

  9. Faivre S, Kalla S, Cvitkovic Eetal. Oxaliplatin and paclitaxel combination in patients with platinum-pretreated ovarian carcinoma: an investigator-originated compassionate-use experience. Ann Oncol, 10:1125–1128, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Shi L, Nishioka WK, Th’ng Jet al.Premature p34cdc2 activation required for apoptosis [see comments]. Science, 263:1143–1145, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest, 104:1645–1653, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. O’Connor PM, Fan S. DNA damage checkpoints: implications for cancer therapy. Progr Cell Cycle Res, 2:165–173, 1996.

    Article  Google Scholar 

  13. el Khateeb M, Appleton TG, Gahan LRet al.Reactions of cisplatin hydrolytes with methionine, cysteine, and plasma ultrafiltrate studied by a combination of HPLC and NMR techniques. J Inorg Biochem, 77:13–21, 1999.

    Article  PubMed  Google Scholar 

  14. Kelland LR. Preclinical perspectives on platinum resistance. Drugs, 59 Suppl 4:1–8, 2000.

    Google Scholar 

  15. Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther, 34:155–166, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts JJ, Friedlos F. Quantitative estimation of cisplatin-induced DNA interstrand cross-links and their repair in mammalian cells: relationship to toxicity. Pharmacol Ther, 34:215–246, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Pinto AL, Lippard SJ. Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta, 780:167–180, 1985.

    PubMed  CAS  Google Scholar 

  18. Kelland LR. New platinum antitumor complexes. Crit Rev Oncol Hematol, 15:191–219, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Perez C, Leng M, Malinge JM. Rearrangement of interstrand cross-links into intrastrand cross-links in cis-diamminedichloroplatinum(II)-modified DNA. Nucleic Acids Res, 25:896–903, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Malinge JM, Giraud-Panis MJ, Leng M. Interstrand cross-links of cisplatin induce striking distortions in DNA. J Inorg Biochem, 77:23–29, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Jennerwein MM, Eastman A, Khokhar A. Characterization of adducts produced in DNA by isomeric 1,2-diaminocyclohexaneplatinum(II) complexes. Chem Biol Interact, 70:3949, 1989.

    Article  Google Scholar 

  22. Eastman A. Glutathione-mediated activation of anticancer platinum(IV) complexes. Biochem Pharmacol, 36:4177–4178, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Bellon SF, Coleman JH, Lippard SJ. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochem, 30:8026–8035, 1991.

    Article  CAS  Google Scholar 

  24. Turchi JJ, Henkels KM, Hermanson IL, Patrick SM. Interactions of mammalian proteins with cisplatin-damaged DNA. J Inorg Biochem, 77:83–87, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Chaney SG, Vaisman A. Specificity of platinum-DNA adduct repair. J Inorg Biochem, 77:71–81, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Donahue BA, Augot M, Bellon SFet al.Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochem, 29:5872–5880, 1990.

    Article  CAS  Google Scholar 

  27. He Q, Liang CH, Lippard SJ. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA, 97:5768–5772, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Kastan MB, Onyekwere 0, Sidransky Det al.Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 51:6304–6311, 1991.

    PubMed  CAS  Google Scholar 

  29. Hainaut P. The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol, 7:76–82, 1995.

    PubMed  CAS  Google Scholar 

  30. Jayaraman L, Moorthy NC, Murthy KGet al.High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev, 12:462–472, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene, 18:6145–6157, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science, 253:49–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell, 79:189–192, 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science, 266:1821–1828, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Thorlacius S, Borresen AL, Eyfjord JE. Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res, 53:1637–1641, 1993.

    PubMed  CAS  Google Scholar 

  36. Michieli P, Chedid M, Lin Det al.Induction of WAFI/CIPI by a p53-independent pathway. Cancer Res, 54:3391–3395, 1994.

    PubMed  CAS  Google Scholar 

  37. Zhang W, Grasso L, McClain CDet al.p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res, 55:668–674, 1995.

    PubMed  CAS  Google Scholar 

  38. Haapajarvi T, Pitkanen K, Laiho M. Human melanoma cell line UV responses show independency of p53 function. Cell Growth Differ, 10:163–171, 1999.

    PubMed  CAS  Google Scholar 

  39. Segal-Bendirdjian E, Mannone L, Jacquemin-Sablon A. Alteration in p53 pathway and defect in apoptosis contribute independently to cisplatin-resistance. Cell Death Differ, 5:390–400, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Fan S, Smith ML, Rivet DJet al.Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res, 55:1649–1654, 1995.

    PubMed  CAS  Google Scholar 

  41. Hawkins DS, Demers GW, Galloway DA. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res, 56:892–898, 1996.

    PubMed  CAS  Google Scholar 

  42. Ozols RF, Corden BJ, Jacob Jet al.High-dose cisplatin in hypertonic saline. Ann Intern Med, 100:19–24, 1984.

    PubMed  CAS  Google Scholar 

  43. Ozols RF, Hamilton TC, Reed Eet al.High dose cisplatin and drug resistance: Clinical and laboratory correlations. In: Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, M Nicolini (ed.), Martinus Nijhoff, Boston, MA, 197–206, 1988.

    Chapter  Google Scholar 

  44. Schilder RJ, Ozols RF. New therapies for ovarian cancer. Cancer Invest, 10:307–315, 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Andrews PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells, 2:35–43, 1990.

    PubMed  CAS  Google Scholar 

  46. Kelley SL, Rozencweig M. Resistance to platinum compounds: mechanisms and beyond. Eur J Cancer Clin Oncol, 25:1135–1140, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Jodrell DI, Egorin MJ, Canetta RMet al.Relationships between carboplatin exposure and tumor response and toxicity in patients with ovarian cancer. J Clin Oncol, 10:520–528, 1992.

    PubMed  CAS  Google Scholar 

  48. Hagopian GS, Mills GB, Khokhar ARet al.Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analog (1R,2Rdiaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res, 5:655–663, 1999.

    PubMed  CAS  Google Scholar 

  49. Hills CA, Kelland LR, Abel Get al.Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes. Br J Cancer, 59:527–534, 1989.

    Article  PubMed  CAS  Google Scholar 

  50. Kelland LR, Barnard CF, Evans IGet al.Synthesis and in vitro and in vivo antitumor activity of a series of trans platinum antitumor complexes. J Med Chem, 38:3016–3024, 1995.

    Article  PubMed  CAS  Google Scholar 

  51. Wolf CR, Hayward IP, Lawrie SSet al.Cellular heterogeneity and drug resistance in two ovarian adenocarcinoma cell lines derived from a single patient. Int J Cancer, 39:695–702, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Kelland LR, Mistry P, Abel Get al.Mechanism-related circumvention of acquired cisdiamminedichloroplatinum(II) resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res, 52:3857–3864, 1992.

    PubMed  CAS  Google Scholar 

  53. Teicher BA, Holden SA, Kelley MJet al.Characterization of a human squamous carcinoma cell line resistant to cis-diamminedichloroplatinum(II). Cancer Res, 47:388–393, 1987.

    PubMed  CAS  Google Scholar 

  54. Richon VM, Schulte N, Eastman A. Multiple mechanisms of resistance to cisdiamminedichloroplatinum(II) in murine leukemia L1210 cells. Cancer Res, 47:2056–2061, 1987.

    PubMed  CAS  Google Scholar 

  55. Eastman A, Schulte N, Sheibani N, Sorenson CM. Mechanisms of resistance to platinum drugs. In: Nicolini M (ed.), Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy, Martinus Nijhoff, Boston, MA, 178–196, 1988.

    Chapter  Google Scholar 

  56. Teicher BA, Herman TS, Holden SAet al.Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science, 247:1457–1461, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Siddik ZH, Mims B, Lozano G, Thai G. Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res, 58:698–703, 1998.

    PubMed  CAS  Google Scholar 

  58. Fraval HN, Roberts JJ. Excision repair of cis-diamminedichloroplatinum(II)-induced damage to DNA of Chinese hamster cells. Cancer Res, 39:1793–1797, 1979.

    PubMed  CAS  Google Scholar 

  59. Johnson SW, Laub PB, Beesley JSet al.Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res, 57:850–856, 1997.

    PubMed  CAS  Google Scholar 

  60. Teicher BA, Holden SA, Herman TSet al.Characteristics of five human tumor cell lines and sublines resistant to cis-diamminedichloroplatinum(II). Int J Cancer, 47:252–260, 1991.

    Article  PubMed  CAS  Google Scholar 

  61. Andrews PA, Velury S, Mann SC, Howell SB. cis-Diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Res, 48:68–73, 1988.

    PubMed  CAS  Google Scholar 

  62. Bible KC, Boerner SA, Kirkland Ket al.Characterization of an ovarian carcinoma cell line resistant to cisplatin and flavopiridol. Clin Cancer Res, 6:661–670, 2000.

    PubMed  CAS  Google Scholar 

  63. Wada H, Saikawa Y, NiidaY et al. Selectively induced high MRP gene expression in multidrug-resistant human HL60 leukemia cells. Exp Hematol, 27:99–109, 1999.

    Article  PubMed  CAS  Google Scholar 

  64. Smith CD, Carmeli S, Moore RE, Patterson GM. Scytophycins, novel microfilamentdepolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Res, 53:1343–1347, 1993.

    PubMed  CAS  Google Scholar 

  65. Baekelandt MM, Holm R, Nesland JMet al.P-glycoprotein expression is a marker for chemotherapy resistance and prognosis in advanced ovarian cancer. Anticancer Res, 20:1061–1067, 2000.

    PubMed  CAS  Google Scholar 

  66. Izquierdo MA, van der Zee AG, Vermorken JBet al.Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J Natl Cancer Inst, 87:1230–1237, 1995.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida M, Khokhar AR, Siddik ZH. Biochemical pharmacology of homologous alicyclic mixed amine platinum(II) complexes in sensitive and resistant tumor cell lines. Cancer Res, 54:3468–3473, 1994.

    PubMed  CAS  Google Scholar 

  68. Gately DP, Howell SB. Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer, 67:1171–1176, 1993.

    Article  PubMed  CAS  Google Scholar 

  69. Kool M, de Haas M, Scheffer GLet al.Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRPS, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res, 57:3537–3547, 1997.

    PubMed  CAS  Google Scholar 

  70. Shen DW, Goldenberg S, Pastan I, Gottesman MM. Decreased accumulation of [14C]carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J Cell Physiol, 183:108–116, 2000.

    Article  PubMed  CAS  Google Scholar 

  71. Kido Y, Khokhar AR, Siddik ZH. Differential cytotoxicity, uptake and DNA binding of tetraplatin and analogous isomers in sensitive and resistant cancer cell lines. Anticancer Drugs, 4:251–258, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt W, Chaney SG. Role of carrier ligand in platinum resistance of human carcinoma cell lines. Cancer Res, 53:799–805, 1993.

    PubMed  CAS  Google Scholar 

  73. Mellish KJ, Kelland LR, Harrap KR. In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br J Cancer, 68:240–250, 1993.

    Article  PubMed  CAS  Google Scholar 

  74. Coluccia M, Nassi A, Boccarelli Aet al.In vitro and in vivo antitumour activity and cellular pharmacological properties of new platinum-iminoether complexes with different configuration at the iminoether ligands. J Inorg Biochem, 77:31–35, 2000.

    Article  Google Scholar 

  75. Godwin AK, Meister A, O’Dwyer PJet al.High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA, 89:3070–3074, 1992.

    Article  PubMed  CAS  Google Scholar 

  76. Hamaguchi K, Godwin AK, Yakushiji Met al.Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res, 53:5225–5232, 1993.

    PubMed  CAS  Google Scholar 

  77. Mistry P, Kelland LR, Abel Get al.The relationships between glutathione, glutathioneS-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer, 64:215–220, 1991.

    Article  PubMed  CAS  Google Scholar 

  78. Kolfschoten GM, Pinedo HM, Scheffer PGet al.Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol Oncol, 76:362–368, 2000.

    Article  PubMed  CAS  Google Scholar 

  79. D’Incalci M, Bonfanti M, Pifferi Aet al.The antitumour activity of alkylating agents is not correlated with the levels of glutathione, glutathione transferase and 06-alkylguanine-DNA-alkyltransferase of human tumour xenografts. Eur J Cancer, 34:1749–1755, 1998.

    Article  PubMed  Google Scholar 

  80. Goto S, lids T, Cho Set al.Overexpression of glutathione S-transferase pi enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res, 31:549–558, 1999.

    Article  PubMed  CAS  Google Scholar 

  81. Andrews PA, Murphy MP, Howell SB. Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion. Cancer Res, 45:6250–6253, 1985.

    PubMed  CAS  Google Scholar 

  82. Goddard P, Valenti M, Kelland LR. The role of glutathione (GSH) in determining sensitivity to platinum drugs in vivo in platinum-sensitive and -resistant murine leukaemia and plasmacytoma and human ovarian carcinoma xenografts. Anticancer Res, 14:1065–1070, 1994.

    PubMed  CAS  Google Scholar 

  83. Meijer C, Mulder NH, Timmer-Bosscha Het al.Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res, 52:6885–6889, 1992.

    PubMed  CAS  Google Scholar 

  84. Hamilton TC, Winker MA, Louie KGet al.Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem Pharmacol, 34:2583–2586, 1985.

    Article  PubMed  CAS  Google Scholar 

  85. Chiba T, Takahashi S, Oguri-Hyakumachi Net al.Increased intracellular glutathione levels protect human T leukemia cells from Fas-mediated apoptosis. FASEB I, 9:A523, 1995.

    Google Scholar 

  86. Slater AF, Nobel CS, Maellaro Eet al.Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J, 306:771–778, 1995.

    PubMed  CAS  Google Scholar 

  87. Meyn RE, Mirkovic N, Voehringer DW, Story MD. Bcl-2 inhibits radiation-induced apoptosis by upregulating the antioxidant properties of the cell. Proc Amer Assoc Cancer Res, 37:A159, 1996.

    Google Scholar 

  88. Kane DJ, Sarafian TA, Anton Ret al.Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science, 262:1274–1277, 1993.

    Article  PubMed  CAS  Google Scholar 

  89. Hockenbery DM, Oltvai ZN, Yin XMet al.Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75:241–251, 1993.

    Article  PubMed  CAS  Google Scholar 

  90. Chiao C, Carothers AM, Grunberger Det al.Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res, 55:3576–3583, 1995.

    PubMed  CAS  Google Scholar 

  91. Shiga H, Heath EI, Rasmussen AAet al.Prognostic value of p53, glutathione Stransferase pi, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res, 5:4097–4104, 1999.

    PubMed  CAS  Google Scholar 

  92. Kelley SL, Basu A, Teicher BAet al.Overexpression of metallothionein confers resistance to anticancer drugs. Science, 241:1813–1815, 1988.

    Article  PubMed  CAS  Google Scholar 

  93. Kasahara K, Fujiwara Y, Nishio Ket al.Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res, 51:3237–3242, 1991.

    Google Scholar 

  94. Andrews PA, Murphy MP, Howell SB. Metallothionein-mediated cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol, 19:149–154, 1987.

    Article  PubMed  CAS  Google Scholar 

  95. Schilder RI, Hall L, Monks Aet al.Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int J Cancer, 45:416–422, 1990.

    Article  PubMed  CAS  Google Scholar 

  96. Murphy D, McGown AT, Crowther Det al.Metallothionein levels in ovarian tumours before and after chemotherapy. Br J Cancer, 63:711–714, 1991.

    Article  PubMed  CAS  Google Scholar 

  97. Toyoda H, Mizushima T, Satoh Met al.HeLa cell transformants overproducing mouse metallothionein show in vivo resistance to cis-platinum in nude mice. Jpn J Cancer Res, 91:91–98, 2000.

    Article  PubMed  CAS  Google Scholar 

  98. Sheibani N, Jennerwein MM, Eastman A. DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): host cell reactivation of damaged plasmid DNA. Biochem, 28:3120–3124, 1989.

    Article  CAS  Google Scholar 

  99. Lai GM, Ozols RF, Smyth JFet al.Enhanced DNA repair and resistance to cisplatin in human ovarian cancer. Biochem Pharmacol, 37:4597–4600, 1988.

    Article  PubMed  CAS  Google Scholar 

  100. Kelland LR, Mistry P, Abel Get al.Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatous germ cell line. Cancer Res, 52:1710–1716, 1992.

    PubMed  CAS  Google Scholar 

  101. Chao CC, Lee YL, Cheng PW, Lin-Chao S. Enhanced host cell reactivation of damaged plasmid DNA in HeLa cells resistant to cis-diamminedichloroplatinum(II). Cancer Res, 51:601–605, 1991.

    PubMed  CAS  Google Scholar 

  102. Chaney SG, Sancar A. DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst, 88:1346–1360, 1996.

    Article  PubMed  CAS  Google Scholar 

  103. Eastman A, Schulte N. Enhanced DNA repair as a mechanism of resistance to cisdiamminedichloroplatinum(II). Biochem, 27:4730–4734, 1988.

    Article  CAS  Google Scholar 

  104. Jennerwein MM, Eastman A, Khokhar AR. The role of DNA repair in resistance of L1210 cells to isomeric 1,2-diaminocyclohexaneplatinum complexes and ultraviolet irradiation. Mutat Res, 254:89–96, 1991.

    Article  PubMed  CAS  Google Scholar 

  105. Page JD, Husain I, Sancar A, Chaney SG. Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality. Biochem, 29:1016–1024, 1990.

    Article  CAS  Google Scholar 

  106. Szymkowski DE, Yarema K, Essigmann JMet al.An intrastrand d(GpG) platinum crosslink in duplex M13 DNA is refractory to repair by human cell extracts. Proc Natl Acad Sci USA, 89:10772–10776, 1992.

    Article  PubMed  CAS  Google Scholar 

  107. Heiger-Bernays WJ, Essigmann JM, Lippard SJ. Effect of the antitumor drug cisdiamminedichloroplatinum(II) and related platinum complexes on eukaryotic DNA replication. Biochem, 29:8461–8466, 1990.

    Article  CAS  Google Scholar 

  108. Sancar A. Mechanisms of DNA excision repair. Science, 266:1954–1956, 1994.

    Article  PubMed  CAS  Google Scholar 

  109. Reed E. Platinum-DNA adduct, nucleotide excision repair and platinum based anticancer chemotherapy. Cancer Treat Rev, 24:331–344, 1998.

    Article  PubMed  CAS  Google Scholar 

  110. Lee KB, Parker RJ, Bohr Vet al.Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3. Carcinogenesis, 14:2177–2180, 1993.

    Article  PubMed  CAS  Google Scholar 

  111. Dabholkar M, Vionnet J, Bostick-Bruton Fet al.Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest, 94:703–708, 1994.

    Article  PubMed  CAS  Google Scholar 

  112. Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res, 4:1–6, 1998.

    PubMed  CAS  Google Scholar 

  113. Mello JA, Acharya S, Fishel R, Essigmann JM. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol, 3:579–589, 1996.

    Article  PubMed  CAS  Google Scholar 

  114. Duckett DR, Drummond JT, Murchie AIet al.Human MutSalpha recognizes damaged DNA base pairs containing 06-methylguanine, 04-methylthymine, or the cisplatind(GpG) adduct. Proc Natl Acad Sci USA, 93:6443–6447, 1996.

    Article  PubMed  CAS  Google Scholar 

  115. Brown R, Hirst GL, Gallagher WMet al.hMLHI expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene, 15:45–52, 1997.

    Article  PubMed  CAS  Google Scholar 

  116. Fink D, Nebel S, Aebi Set al.The role of DNA mismatch repair in platinum drug resistance. Cancer Res, 56:4881–4886, 1996.

    PubMed  CAS  Google Scholar 

  117. Vaisman A, Varchenko M, Umar Aet al.The role of hMLHI, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res, 58:3579–3585, 1998.

    PubMed  CAS  Google Scholar 

  118. Mamenta EL, Poma EE, Kaufmann WKet al.Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res, 54:3500–3505, 1994.

    PubMed  CAS  Google Scholar 

  119. Pietenpol JA, Tokino T, Thiagalingam Set al.Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci USA, 91:19982002, 1994.

    Google Scholar 

  120. Righetti SC, Perego P, Coma Eet al.Emergence of p53 mutant cisplatin-resistant ovarian carcinoma cells following drug exposure: spontaneously mutant selection. Cell Growth Differ, 10:473–478, 1999.

    PubMed  CAS  Google Scholar 

  121. Marx D, Meden H, Ziemek Tet al.Expression of the p53 tumour suppressor gene as a prognostic marker in platinum-treated patients with ovarian cancer. Eur J Cancer, 34:845–850, 1998.

    Article  PubMed  CAS  Google Scholar 

  122. Cabelguenne A, Blons H, de Waziers Iet al.p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol, 18:1465–1473, 2000.

    PubMed  CAS  Google Scholar 

  123. Burger H, Nooter K, Boersma AWet al.Expression of p53, BcI-2 and Bax in cisplatininduced apoptosis in testicular germ cell tumour cell lines. Br J Cancer, 77:1562–1567, 1998.

    Article  PubMed  CAS  Google Scholar 

  124. Qureshi KN, Griffiths TR, Robinson MCet al.TP53 accumulation predicts improved survival in patients resistant to systemic cisplatin-based chemotherapy for muscleinvasive bladder cancer. Clin Cancer Res, 5:3500–3507, 1999.

    PubMed  CAS  Google Scholar 

  125. Herod JJ, Eliopoulos AG, Warwick Jet al.The prognostic significance of Bcl-2 and p53 expression in ovarian carcinoma. Cancer Res, 56:2178–2184, 1996.

    PubMed  CAS  Google Scholar 

  126. Ormerod MG, O’Neill C, Robertson Det al.cis-Diamminedichloroplatinum(II)-induced cell death through apoptosis in sensitive and resistant human ovarian carcinoma cell lines. Cancer Chemother Pharmacol, 37:463–471, 1996.

    Article  PubMed  CAS  Google Scholar 

  127. Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene, 18:7644–7655, 1999.

    Article  PubMed  CAS  Google Scholar 

  128. Fritsche M, Haessler C, Brandner G. Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene, 8:307–318, 1993.

    PubMed  CAS  Google Scholar 

  129. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91:325–334, 1997.

    Article  PubMed  CAS  Google Scholar 

  130. Meek DW. Mechanisms of switching on p53: a role for covalent modification? Oncogene, 18:7666–7675, 1999.

    Article  PubMed  CAS  Google Scholar 

  131. Kondo S, Barnett GH, Hara Het al.MDM2 protein confers the resistance of a human glioblastoma cell line to cisplatin-induced apoptosis. Oncogene, 10:2001–2006, 1995.

    PubMed  CAS  Google Scholar 

  132. Mano Y, Kikuchi Y, Yamamoto Ket al.Bcl-2 as a predictor of chemosensitivity and prognosis in primary epithelial ovarian cancer. Eur J Cancer, 35:1214–1219, 1999.

    Article  PubMed  CAS  Google Scholar 

  133. Kessis TD, Slebos RJ, Nelson WGet a/. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA, 90:3988–3992, 1993.

    Article  PubMed  CAS  Google Scholar 

  134. Siddik ZH, Hagopian GS, Thai Get al.Role of p53 in the ability of 1,2- diaminocyclohexane-diacetato-dichloro-Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem, 77:65–70, 1999.

    Article  PubMed  CAS  Google Scholar 

  135. Farrow SN, Brown R. New members of the Bc1–2 family and their protein partners. Curr Opin Genet Dev, 6:45–49, 1996.

    Article  PubMed  CAS  Google Scholar 

  136. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell, 100:57–70, 2000.

    Article  PubMed  CAS  Google Scholar 

  137. Eliopoulos AG, Kerr DJ, Herod Jet al.The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene, 11:1217–1228, 1995.

    PubMed  CAS  Google Scholar 

  138. Strasser A, Harris AW, Jacks T, Cory S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bc1–2. Cell, 79:329–339, 1994.

    Article  PubMed  CAS  Google Scholar 

  139. Miyake H, Hara I, Yamanaka Ket al.Synergistic enhancement of resistance to cisplatin in human bladder cancer cells by overexpression of mutant-type p53 and Bcl-2. J Urol, 162:2176–2181, 1999.

    Article  PubMed  CAS  Google Scholar 

  140. Beale PJ, Rogers P, Boxall Fet al.BCL-2 family protein expression and platinum drug resistance in ovarian carcinoma. Br J Cancer, 82:436–440, 2000.

    Article  PubMed  CAS  Google Scholar 

  141. Henkels KM, Turchi H. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res, 59:3077–3083, 1999.

    PubMed  CAS  Google Scholar 

  142. Gebauer G, Mirakhur B, Nguyen Qet al.Cisplatin-resistance involves the defective processing of MEKKI in human ovarian adenocarcinoma 2008/C13 cells. Int J Oncol, 16:321–325, 2000.

    PubMed  CAS  Google Scholar 

  143. Cardone MH, Roy N, Stennicke HRet al.Regulation of cell death protease caspase-9 by phosphorylation. Science, 282:1318–1321, 1998.

    Article  PubMed  CAS  Google Scholar 

  144. Slamon DJ, Godolphin W, Jones LAet al.Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244:707–712, 1989.

    Article  PubMed  CAS  Google Scholar 

  145. Benz CC, Scott GK, Sarup JCet al.Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat, 24:85–95, 1993.

    Article  CAS  Google Scholar 

  146. Tsai CM, Yu D, Chang KTet al.Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. J Natl Cancer Inst, 87:682–684, 1995.

    Article  PubMed  CAS  Google Scholar 

  147. Yu D, Liu B, Tan Met al.Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr- I-independent mechanisms. Oncogene, 13:1359–1365, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siddik, Z.H. (2002). Biochemical and Molecular Mechanisms of Cisplatin Resistance. In: Andersson, B., Murray, D. (eds) Clinically Relevant Resistance in Cancer Chemotherapy. Cancer Treatment and Research, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1173-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1173-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5428-4

  • Online ISBN: 978-1-4615-1173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics