Skip to main content

Molecular pathology of dityrosine cross-links in proteins: Structural and functional analysis of four proteins

  • Chapter
Oxygen/Nitrogen Radicals: Cell Injury and Disease

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 37))

Abstract

The dityrosine bond (DT) is an oxidative covalent cross-link between two tyrosines. DT cross-linking is increasingly identified as a marker of oxidative stress, aging and disease, and has been detected in diverse pathologies. While DT cross-linked proteins have been documented, the consequences of the DT link on the structure and function of the so modified proteins are yet to be understood. With this in view, we have studied the properties of intermolecular DT-dimers of four proteins of diverse functions, namely the enzyme ribonuclease A, the signal protein calmodulin, and the eye lens proteins alpha-and gamma Bcrystallins. We find that DT is formed through radical reactions and type I photosensitization (including OH, O2 - and 00N0-), but not by 1O2and NO2 - (which modify his, trp and met more readily). Tyr residues on the surface of the protein make DT bonds (intra-and intermolecular) most readily and preferentially. The conformation of each of these DT-dimers, monitored by spectroscopy, is seen not to be significantly altered in comparison to that of the parent monomer, but the structural stability of the DT cross-linked molecule is lower than that of the parent native monomer. The DT-dimer is denatured at a lower temperature, and at lower concentrations of urea or guanidinium chloride. The effect of DT-cross-linking on the biological activities of these proteins was next studied. The enzymatic activity of the DT-dimer of ribonuclease A is not lost but lowered. DT-dimerization of lens alpha-crystallin did not significantly affect the chaperone-like ability; it inhibits the self-aggregation and precipitation of target proteins just as well as the parent, unmodified alpha-crystallin does. DT-dimerization of gamma B-crystallin is however seen to lead to more ready aggregation and precipitation, a point of interest in cataract. In the case of calmodulin, we could generate both intermolecular and intramolecular DT cross-linking, and study both the DT-dimer and DT-monomer. The DT-dimer binds smooth muscle light chain kinase and also Ca2+, but less efficiently and over a broad concentration range than the native monomer. The intramolecular DT-monomer is weaker in all these respects, presumably since it is structurally more constrained. These results suggest that DT cross-linking of globular proteins weakens their structural stability and compromises (though does not abolish) their biological activity, both of which are pathologically relevant. The intramolecular DT cross-link would appear to lead to more severe structural and functional consequences. (Mol Cell Biochem 234/235: 27–38, 2002)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stadtman ER: Implication of protein oxidation in protein turnover, aging, and oxygen toxicity. Basic Life Sci 49: 331–339, 1998

    Google Scholar 

  2. Malencik DA, Anderson SR: Dityrosine formation in calmodulin. Biochemistry 26: 695–704, 1987

    Article  PubMed  CAS  Google Scholar 

  3. Amado R, Aeshbach R, Neukom H: Dityrosinein vitroproduction and characterization. Meth Enzymol 107: 377–388, 1984

    Article  PubMed  CAS  Google Scholar 

  4. Davies KJ: Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262: 9895–9901, 1987

    PubMed  CAS  Google Scholar 

  5. Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW, Thorpe SR: Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem 268: 12341–12347, 1993

    PubMed  CAS  Google Scholar 

  6. Anderson SO: The cross-links in resilin identified as dityrosine and trityrosine. Biochim Biophys Acta 93: 213–215, 1964

    Article  Google Scholar 

  7. LaBella F, Keeley F, Vivian S, Thornhill D: Evidence for dityrosine in elastin. Biochem Biophys Res Commun 26: 748–753, 1967

    Article  PubMed  CAS  Google Scholar 

  8. Galeazzi L, Ronchi P, Franceschi C, Giunta S:In vitroperoxidase oxidation induces stable dimers of beta-amyloid (1–42) through dityrosine bridge formation. Amyloid 6: 7–13, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Pennathur S, Jackson-Lewis W, Przedborski S, Heinecke JW: Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o’-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274: 34621–34628, 1999

    Article  PubMed  CAS  Google Scholar 

  10. Ziouzenkova O, Asatryan L, Akmal M, Tetta C, Wratten ML, LosetoWich G, Jurgens G, Heinecke J, Sevanian A: Oxidative cross-linking of ApoB100 and hemoglobin results in low density modification in blood. Relevance to atherogenesis caused by hemodialysis. J Biol Chem 274: 18916–18924, 1999

    Article  PubMed  CAS  Google Scholar 

  11. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Subramaniam P, Heinecke JW: Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 272: 3520–3526, 1997

    Article  PubMed  CAS  Google Scholar 

  12. Abdelrahim M, Morris E, Carver J, Facchina S, White A, Verma A: Liquid chromatographic assay of dityrosine in cerebrospinal fluid. J Chromatogr B. Biomed Sci 696: 175–182, 1997

    Article  CAS  Google Scholar 

  13. Kato Y, Maruyama W, Naoi M, Hashizume Y, Osawa T: Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett 439: 231–234, 1998

    Article  PubMed  CAS  Google Scholar 

  14. van der Vliet A, Hristova M, Cross CE, Eiserich JP, Goldkorn T: Peroxynitrite induces covalent dimerization of epidermal growth factor receptor A431 epidemoid carcinoma cells. J Biol Chem 273: 31860–31866, 1998

    Article  PubMed  Google Scholar 

  15. Onorato JM, Thorpe SR, Baynes JW: Immunohistochemical and ELISA assays for biomarkers of oxidative stress and disease. Ann NY Acad Sci 854: 277–290, 1998

    Article  PubMed  CAS  Google Scholar 

  16. Leeuwenburgh C, Hansen PA, Holloszy JO, Heinecke JW: Hydroxyl radical generation during exercise increases mitochondria) protein oxidation and levels of urinary dityrosine. Free Radic Biol Med 27: 186–192, 1999

    Article  PubMed  CAS  Google Scholar 

  17. Heinecke JW: Free radical modification of low-density lipoprotein: Mechanisms and biological consequences. Free Radic Biol Med 3: 65–73, 1987

    Article  PubMed  CAS  Google Scholar 

  18. Raven DJ, Earland C, Little M: Occurrence of dityrosine in tussel silk fibroin and keratin. Biochim Biophys Acta 251: 96–99, 1971

    Article  PubMed  CAS  Google Scholar 

  19. Mullerova A, Michlik I, Blazej A: Formation of dityrosine in collagen and elastin. Leder 25: 85–88, 1974

    CAS  Google Scholar 

  20. Tew D, Ortiz de Montellano PR: The myoglobin protein radical: Coupling of Tyr-103 and Tyr-151 in the H2O2mediated cross-linking of sperm whale myoglobin. J Biol Chem 263, 17880–17886, 1988

    PubMed  CAS  Google Scholar 

  21. Tenovuo J, Paunio K: Peroxidase catalysed formation of dityrosine, a protein cross-link, in human periodontal ligament collagen. Arch Oral Biol 24: 591–594, 1979

    Article  PubMed  CAS  Google Scholar 

  22. Tenovuo J, Paunio K: Formation of dityrosine by human salivary gland lactoperoxidasein vitro.Act Odontol Scand 37: 147–152, 1979

    Article  CAS  Google Scholar 

  23. Wells-Knecht MC, Huggins TG, Dyer SR, Thorpe SR, Baynes JW: Oxidized amino acids in lens proteins with age. J Biol Chem 268: 12348–12352,1993

    PubMed  CAS  Google Scholar 

  24. Garcia-Castineiras S, Dillon J, Spector A: Non-trytophan fluorescence associated with human lens proteins: apparent complexity and isolation of dityrosine and anthranilic acid. Exp Eye Res 26: 464–476, 1987

    Google Scholar 

  25. van Haard PMM, Kramps JA, Hoenders JH, Wollensak J: Development of non-disulphide covalent cross-links in nuclear cataractogenesis. Interdiscipl Topics Gerontol 13: 212–224, 1978

    Google Scholar 

  26. McNamara MK, Augusteyn RC: 3–3’-dityrosine in the proteins of senile nuclear cataracts. Exp Eye Res 30: 319–321, 1980

    Article  PubMed  CAS  Google Scholar 

  27. Baynes JW: Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40: 405–412, 1991

    Article  PubMed  CAS  Google Scholar 

  28. Bodaness RS, Leclair M, Zigler JS Jr: An analysis of the H2O2mediated cross-linking of lens crystallins catalyzed by the heme-undecapeptide from cytochrome c. Arch Biochem Biophys 231: 461–469, 1984

    Article  PubMed  CAS  Google Scholar 

  29. Guptasarma P, Balasubramanian D: Dityrosine formation in the proteins of the eye lens. Curr Eye Res 11: 1121–1125, 1992

    Article  PubMed  CAS  Google Scholar 

  30. Aeschbach R, Amado R, Neukom H: Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta 439: 292–301, 1976

    Article  PubMed  CAS  Google Scholar 

  31. Ingolia T, Craig E: Four small heat-shock proteins are related to each other and to mammalian a-crystallin. Proc Natl Acad Sci USA 79: 2360–2364, 1982

    Article  PubMed  CAS  Google Scholar 

  32. Horwitz J: Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449–10453, 1992

    Article  PubMed  CAS  Google Scholar 

  33. Raman B, Rao CM: Chaperone-like activity and quaternary structure of a-crystallin. J Biol Chem 269: 27264–27268, 1994

    PubMed  CAS  Google Scholar 

  34. Srinivas V, Datta SA, Ramakrishna T, Rao CM: Studies on the alphacrystallin target proetin binding sites: Sequential binding with two target proteins. Mol Vis 7: 114–119, 2001

    PubMed  CAS  Google Scholar 

  35. Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G: The molecular structure and stability of the eye lens: X-ray analysis of y-crystallin II. Nature 289: 771–777, 1981

    Article  PubMed  CAS  Google Scholar 

  36. Malencik DA, Anderson SR: Dityrosine formation in calmodulin: Conditions for intermolecular cross-linking. Biochemistry 33: 13363–13376, 1994

    Article  PubMed  CAS  Google Scholar 

  37. Takenaka O, Horinishi H, Shibata K: Three types of tyrosine residue in ribonuclease. J Biochem 62: 501–503, 1967

    PubMed  CAS  Google Scholar 

  38. Okajima T, Kawata Y, Hamaguchi K: Chemical modification of tryptophan residues and stability changes in proteins. Biochemistry 29: 9168–9175, 1990

    Article  PubMed  CAS  Google Scholar 

  39. Kanwar R, Balasubramanian D: Structure and stability of the dityrosinelinked dimer of yB-crystallin. Exp Eye Res 68: 773–784, 1999

    Article  PubMed  CAS  Google Scholar 

  40. Gopalakrishna R, Anderson WB: Ca2+-induced hydrophobic site on calmodulin: Application for purification of calmodulin by Phenyl Sepharose affinity chromatography. Biochem Biophys Res Commun 104: 830–836, 1982

    Article  PubMed  CAS  Google Scholar 

  41. Midden WR, Wang SY: Singlet oxygen generation for solution kinetics: Clean and simple. J Am Chem Soc. 105: 4129–4135, 1983

    Article  CAS  Google Scholar 

  42. Balasubramanian D, Du X, Zigler JS Jr: The reaction of singlet oxygen with proteins, with special reference to the crystallins. Photochem Photobiol 54: 761–768, 1990

    Article  Google Scholar 

  43. Paik DC, Dillon J: The Nitrite/alpha crystallin reaction: A possible mechanism in lens matrix damage. Exp Eye Res 70:73–80, 2000

    Article  PubMed  CAS  Google Scholar 

  44. Koppenol WH, Kissner R, Beckman JS: Syntheses of peroxynitrite: To go with the flow or on solid grounds? Meth Enzymol 269: 296–302, 1996

    Article  PubMed  CAS  Google Scholar 

  45. Rice RH, Lee YM, Brown WD: Interactions of heme proteins with hydrogen peroxide: Protein cross-linking and covalent binding of benzo[a] pyrene and 17 beta-estradiol. Arch Biochem Biophys 221: 417–427, 1983

    Article  PubMed  CAS  Google Scholar 

  46. Parker CA: In: Photoluminescence of Solutions, with Applications to Photochemistry and Analytical Chemistry. Elsevier, New York, 1968

    Google Scholar 

  47. Lehrer SS: Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10: 3254–3263, 1971

    Article  PubMed  CAS  Google Scholar 

  48. Malencik DA, Anderson SR: Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion. Biochem Biophys Res Commun 178: 60–67, 1991

    Article  PubMed  CAS  Google Scholar 

  49. Stryer L: Fluorescence spectroscopy of proteins. Science 162: 526–533, 1968

    Article  PubMed  CAS  Google Scholar 

  50. Crook ER, Mathias A.P, Rabin BR: Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2’:3’-phosphate. Biochem J 74: 234–238, 1959

    Google Scholar 

  51. Ozone Secretariat, UNEP: Environmental effects of ozone depletion: 1998 Assessment — Draft Report. UNEP, Nairobi, Kenya, 1998

    Google Scholar 

  52. Koizumi M, Kato S, Mataga N, Matsuura T, Usui Y: In: Photosensitized Reactions. Kagakudojin Publishing Co., Kyoto, Japan, 1978

    Google Scholar 

  53. Rodgers MAL, Powers EL: Oxygen and oxyradicals in chemistry and biology. Academic Press, New York, 1981, pp 441–460 and 479–488

    Google Scholar 

  54. Matheson IBC, Lee J: Chemical reaction rates of amino acids with singlet oxygen. Photochem Photobiol 29: 879–881, 1979

    Article  CAS  Google Scholar 

  55. Kanwar R, Balasubramanian D: Structural studies on some dityrosinecross-linked globular proteins: Stability is weakened but activity is not abolished. Biochemistry 39: 14976–14983, 2000

    Article  PubMed  CAS  Google Scholar 

  56. Kono M, Sen AC, Chakrabarti B: Thermodynamics of thermal and athermal denaturation of y-crystallins: Changes in conformational stability upon glutathione reaction. Biochemistry 29: 464–470, 1990

    Article  PubMed  CAS  Google Scholar 

  57. Garner MH, Garner WH, Spector A: Gamma-crystallin, a major cytoplasmic polypeptide disulfide linked to membrane proteins in human cataract. Biochem Biophys Res Commun 98: 439–447, 1981

    Article  PubMed  CAS  Google Scholar 

  58. Garner WH, Spector A, Schleiche T, Kaptein T: Determination of the solvent accessibility of specific aromatic residues in gamma-crystallin by photo-CIDNP NMR measurements. Curr Eye Res 25: 199–208, 1984

    Google Scholar 

  59. Wang K, Spector A: Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci 36: 311–321, 1995

    PubMed  CAS  Google Scholar 

  60. Dhir P, Akhtar NJ, Sun TX, Liang J: Photooxidized products of recombinant alpha A-crystallin and W9F mutant. Photochem Photobiol 69: 329–335,1999

    Article  PubMed  CAS  Google Scholar 

  61. Babu YS, Bugg CE, Cook WJ: Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204: 191–204, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balasubramanian, D., Kanwar, R. (2002). Molecular pathology of dityrosine cross-links in proteins: Structural and functional analysis of four proteins. In: Vallyathan, V., Shi, X., Castranova, V. (eds) Oxygen/Nitrogen Radicals: Cell Injury and Disease. Developments in Molecular and Cellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1087-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1087-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5388-1

  • Online ISBN: 978-1-4615-1087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics