Skip to main content

3-(2-Thienyl)-L-Alanine as a Competitive Substrate Analogue and Activator of Human Phenylalanine Hydroxylase

  • Chapter
Chemistry and Biology of Pteridines and Folates

Abstract

Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyses the conversion of L-phenylalanine (L-Phe) to form L-tyrosine (L-Tyr) in the presence of the cofactor tetrahydrobiopterin (BH4) and dioxygen. It is well established that PAH is activated by its substrate L-Phe, and upon binding of L-Phe the enzyme exhibits a sigmoidal dependence of activity on substrate concentration, which reflects a slow transition (minutes) of the enzyme from a low activity to a high activity state (1), characteristic of a hysteretic enzyme (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shiman R., Gray D.W. Substrate activation of phenylalanine hydroxylase. A kinetic characterization. J Biol Chem 255: 4793–4800, 1980.

    PubMed  CAS  Google Scholar 

  2. Frieden D. Slow transition and hysteretic behaviour in enzymes. Annu Rev Biochem 48: 471–489, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Krips C., Lines D.R. Phenylketonuria: Reduction of serum levels of phenylalanine following oral administration of β-2 thienylalanine. Aust Paediat J 8: 318–321, 1972.

    PubMed  CAS  Google Scholar 

  4. Lines D.R., Waisman H.A. The effect of feeding β-2-thienylalanine on phenylalanine metabolism in the rhesus monkey. Aust NZJ Med 3: 169–173, 1973.

    Article  CAS  Google Scholar 

  5. Kaufman S., Mason K. Specificity of amino acids as activators and substrates for phenylalanine hydroxylase. J Biol Chem 257: 14667–14678, 1982.

    PubMed  CAS  Google Scholar 

  6. Dhondt J.L., Dautrevaux M., Biserte G., Farriaux J.P. Phenylalanine analogues as inhibitors of phenylalanine hydroxylase from rat liver. New conclusions concerning kinetic behaviors of the enzyme. Biochimie 60: 787–794, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Døskeland A.P., Døskeland S.O., Øgreid D., Flatmark T. The effect of ligands of phenylalanine 4-monooxygenase on the cAMP dependent phosphorylation of the enzyme. J Biol Chem 259: 11242–11248, 1984.

    PubMed  Google Scholar 

  8. Wapnir R.A., Moak, G.S. β-2-Thienyl-DL-alanine as an inhibitor of phenylalanine hydroxylase and phenylalanine intestinal transport. Biochem J 177: 347–352, 1979.

    PubMed  CAS  Google Scholar 

  9. Martínez A., Knappskog P.M., Olafsdottir S., Døskeland A.P., Eiken H.G., Svebak R.M., Bozzini M., Apold J., Fiatmark T. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem J 306: 589–597, 1995.

    PubMed  Google Scholar 

  10. Flatmark T., Stokka A.J., Berge S.V. Use of surface plasmon resonance for real-time measurements of the global conformational transition in human phenylalanine hydroxylase in response to substrate binding and catalytic activation. Anal Biochem 294: 95–101, 2001

    Article  PubMed  CAS  Google Scholar 

  11. Knappskog P.M., Haavik J. Tryptophan fluorescence of human phenylalanine hydroxylase produced in Escherichia coli Biochemistry 34: 11790–11799, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Fisher D.B., Kaufman S. Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase. J Biol Chem 248: 4300–4304, 1973.

    PubMed  CAS  Google Scholar 

  13. Almås B., Toska K., Teigen K., Groehn V., Pfleiderer W., Martínez A., Flatmark T., Haavik J. A kinetic and conformational study on the interaction of tetrahydropteridines with tyrosine hydroxylase. Biochemistry 39: 13676–13686, 2000.

    Article  PubMed  Google Scholar 

  14. Flatmark T., Stevens R.C. Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem Rev 99: 2137–2160, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Teigen K., Frøystein N.Å., Martínez A. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism. J Mol Biol 294: 807–823, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sheldon Milstien Gregory Kapatos Robert A. Levine Barry Shane

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stokka, A.J., Flatmark, T. (2002). 3-(2-Thienyl)-L-Alanine as a Competitive Substrate Analogue and Activator of Human Phenylalanine Hydroxylase. In: Milstien, S., Kapatos, G., Levine, R.A., Shane, B. (eds) Chemistry and Biology of Pteridines and Folates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0945-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0945-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5317-1

  • Online ISBN: 978-1-4615-0945-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics