Skip to main content

Precise Localisation of 5-HT2A Receptors in the Rat Substantia Nigra

  • Chapter
The Basal Ganglia VII

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 52))

  • 177 Accesses

Abstract

The implications of the action of 5-hydroxytryptamine (5-HT) in substantia nigra function are poorly understood, although nigral 5-HT does appear to play a role in motor control, partly independent of dopamine (Oberlander et al., 1981). The substantia nigra receives 5-HT input from the dorsal raphe nucleus (Corvaja et al., 1993), and 5-HTimmunopositive axon terminals are in synaptic contact with both dopaminergic and nondopaminergic, postsynaptic, structures in the substantia nigra (Nedergaard et al., 1988; Moukhles et al., 1997). Experiments performed in vivo in the substantia nigra pars reticulata indicate a primarily inhibitory effect of 5-HT (Collingridge and Davies, 1981; Dray et al., 1976; Fibiger and Miller, 1977; Oberlander et al., 1981), whereas in in vitro studies 5-HT excited over three quarters of pars reticulata GABAergic cells (Rick et al., 1995). The action of 5-HT on pars compacta neurons is excitatory, acting through an inward rectifier current (Nedergaard et al., 1988; Nedergaard et al., 1991), although it can often have opposing effects on different neurons of the same class in the substantia nigra, and its overall physiological effect is far from simple (Dray et al., 1976; Collingridge and Davies, 1981; Nedergaard et al., 1988; Rick et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agnati, L. F., Zoli, M., Stromberg, I. and Fuxe, K., 1995, Intercellular communication in the brain: wiring versus volume transmission, Neuroscience. 69:711–726.

    Article  PubMed  CAS  Google Scholar 

  • Ashby, C. R. and Wang, R. Y., 1996, Pharmacological actions of the atypical antipsychotic drug clozapine, Synapse. 24:349–394.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, V., Levey, A. I. and Bloch, B., 1999, Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neurons in vivo by the cholinergic environment: evidence for regulation of cell surface receptors by endogenous and exogenous stimulation, J Neurosci. 19:10237–10249.

    PubMed  CAS  Google Scholar 

  • Biegon, A., Rainbow, T. C. and McEwen, B. S., 1982, Quantitative autoradiography of serotonin receptors in the rat brain, Brain Res. 242:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Bunin, M. A. and Wightman, R. M., 1999, Paracrine neurotransmission in the CNS: involvement of 5-HT, Trends Neurosci. 22:377–382.

    Article  PubMed  CAS  Google Scholar 

  • Bunney, B. S. and Grace, A. A., 1978, Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity, Life Sci. 23:1715–1727.

    Article  PubMed  CAS  Google Scholar 

  • Chiodo, L. A. and Bunney, B. S., 1985, Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons, J Neurosci. 5:2539–2544.

    PubMed  CAS  Google Scholar 

  • Chiodo, L. A. and Bunney, B. S., 1983, Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons, J Neurosci. 3:1607–1619. Collingridge, G. L. and Davies, J., 1981, The influence of striatal stimulation and putative neurotransmitters on identified neurones in the rat substantia nigra, Brain Res. 212:1607–1619.

    Google Scholar 

  • Cornea-Hebert, V., Riad, M., Wu, C., Singh, S, K. and Descarríes, L., 1999, Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat, J Comp Neurol. 409:187–209.

    CAS  Google Scholar 

  • Corvaja, N., Doucet, G. and Bolam, J. P., 1993, Ultrastructure and synaptic targets of the raphe-nigral projection in the rat, Neuroscience. 55:417–427.

    Article  PubMed  CAS  Google Scholar 

  • Doherty, M. D. and Pickel, V. M., 2000, Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area, Brain Res. 864:176–185.

    Article  PubMed  CAS  Google Scholar 

  • Doumaud, P., Boudin, H., Schonbrunn, A., Tannenbaum, G. S. and Beaudet, A., 1998, Interrelationships between somatostatin sst2A receptors and somatostatin-containing axons in rat brain: evidence for regulation of cell surface receptors by endogenous somatostatin, J Neurosci. 18:1056–1071.

    Google Scholar 

  • Dray, A., Gonye, T. J., Oakley, N. R. and Tanner, T., 1976, Evidence for the existence of a raphe projection to the substantia nigra in rat, Brain Res. 113:45–57.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H. C. and Miller, J. J., 1977, An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat, Neuroscience. 2:975–987.

    Article  Google Scholar 

  • Grace, A. A., Bunney, B. S., Moore, H. and Todd, C. L., 1997, Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs, Trends Neurosci. 20:31–37.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, C. J., Kilpatrick, G. J. and Bunce, K. T., 1993, Development of a radioligand binding assay for 5HT4 receptors in guinea-pig and rat brain, Br J Pharmacol. 109:618–624.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, S., Senzaki, K., Hamaguchi Hamada, K., Tabuchi, K., Yamamoto, H., Yamamoto, T., Yoshikawa, S., Okano, H. and Okado, N., 1998, Localization of 5-HT2A receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken, Brain Res Mol Brain Res. 54:199–211.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto, K., Nishimura, A., Okado, N., Mikuni, M., Nishi, K. and Nagatsu, 1., 2000, Human midbrain dopamine neurons express serotonin 2A receptor: an immunohistochemical demonstration, Brain Res. 853:377–380.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, A., Tinner, B., Bancila, M., Vergé, D., Steinbusch, H. W. M., Agnati, L. F. and Fuxe, K., 2001. Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytrypamine2A receptor-immunoreactive neuronal processes in the rat forebrain, J Chem Neuroanat. 22:185–203.

    Article  PubMed  CAS  Google Scholar 

  • Kane, J., Honigfeld, G., Singer, J. and Meltzer, H., 1988, Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine, Arch Gen Psychiatry. 45:789–796.

    Article  PubMed  CAS  Google Scholar 

  • Kane, J. M., Woemer, M. G., Pollack, S., Safferman, A. Z. and Lieberman, J. A., 1993, Does clozapine cause tardive dyskinesia?, J Clin Psychiatry. 54:327–330.

    PubMed  CAS  Google Scholar 

  • Laporte, A. M., Koscielniak, T., Ponchant, M., Verge, D., Hamon, M. and Gozlan, H., 1992, Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands, Synapse. 10:271–281.

    Article  PubMed  CAS  Google Scholar 

  • Leysen, J. E., Niemegeers, C. J., Van Nueten, J. M. and Laduron, P. M., 1982, [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role, Mol Pharmacol. 21:301–314.

    PubMed  CAS  Google Scholar 

  • Leysen, J. E., Van Gompel, P., Gommeren, W., Woestenborghs, R. and Janssen, P. A., 1986, Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: ritanserin and setoperone, Psychopharmacology. 88:434–444.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez, J. F., Vilaro, M. T., Palacios, J. M. and Mengod, G., 2001, Mapping of 5–14T2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies, J Comp Neurol. 429:5–14.

    Article  PubMed  CAS  Google Scholar 

  • Lucki, I., Nobler, M. S. and Frazer, A., 1984, Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat, J Pharmacol Exp Ther. 228:133–139.

    PubMed  CAS  Google Scholar 

  • Mann, J. J., Stanley, M., McBride, P. A. and McEwen, B. S., 1986, Increased serotonin2 and beta-adrenergic receptor binding in the frontal cortices of suicide victims, Arch Gen Psychiatry. 43:954–959.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, D. J., Nazarali, A. J., Himeno, A. and Saavedra, J. M., 1989, Chronic treatment with (+/-)DOI, a psychotomimetic 5-HT2 agonist, downregulates 5-HT2 receptors in rat brain, Neuropsychopharmacology. 2:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Melis, M., Diana, M. and Gessa, G. L., 1999, Clozapine potently stimulates mesocortical dopamine neurons, Eur J Pharmacol. 366:R11–13.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer, H. Y., Matsubara, S. and Lee, J. C., 1989, Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values, J Pharmacol Exp Ther. 251:238–246.

    PubMed  CAS  Google Scholar 

  • Mengod, G., Pompeiano, M., Martinez Mir, M. I. and Palacios, J. M., 1990, Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites, Brain Research. 524:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Mereu, G., Lilliu, V., Vargiu, P., Muntoni, A. L., Diana, M. and Gessa, G. L., 1995, Depolarization inactivation of dopamine neurons: an artifact?, J Neurosci. 15:1144–1149.

    PubMed  CAS  Google Scholar 

  • Mereu, G., Lilliu, V., Vargiu, P., Muntoni, A. L., Diana, M. and Gessa, G. L., 1994, Failure of chronic haloperidol to induce depolarization inactivation of dopamine neurons in unanesthetized rats, Eur J Pharmacol. 264:449–453.

    Article  PubMed  CAS  Google Scholar 

  • Moukhles, H., Bosler, O., Bolam, J. P., Vallee, A., Umbriaco, D., Geffard, M. and Doucet, G., 1997, Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra, Neuroscience. 76:1159–1171.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard, S., Bolam, J. P. and Greenfield, S. A., 1988, Facilitation of a dendritic calcium conductance by 5hydroxytryptamine in the substantia nigra, Nature. 333:174–177.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard, S., Flatman, J. A. and Engberg, I., 1991, Excitation of substantia nigra pars compacta neurones by 5-hydroxy-tryptamine in-vitro, Neuroreport. 2:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Oberlander, C., Hunt, P. F., Dumont, C. and Boissier, J. R., 1981, Dopamine independent rotational response to unilateral intranigral injection of serotonin, Life Sci. 28:2595–2601.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, A., Cortes, R. and Palacios, J. M., 1985, Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors, Brain Res. 346:231–249.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, A. and Palacios, J. M., 1985, Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors, Brain Res. 346:205–230.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, A., Probst, A. and Palacios, J. M., 1987, Serotonin receptors in the human brain--III. Autoradiographic mapping of serotonin-1 receptors, Neuroscience. 21:97–122.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Palay, S. L. and Webster, H. D., 1991, The Fine Structure of the Nervous System. Neurons and their Supporting Cells, OUP, New York.

    Google Scholar 

  • Pompeiano, M., Palacios, J. M. and Mengod, G., 1994, Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors, Brain Res Mol Brain Res. 23:163–178.

    Article  CAS  Google Scholar 

  • Rick, C. E., Stanford, I. M. and Lacey, M. G., 1995, Excitation of rat substantia nigra pars reticulata neurons by 5-hydroxytryptamine in vitro: evidence for a direct action mediated by 5-hydroxytryptamine2C receptors, Neuroscience. 69:903–913.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres, P. G., Koenig, J. A. and Edwardson, J. M., 1998, Involvement of receptor cycling and receptor reserve in resensitization of muscarinic responses in SH-SY5Y human neuroblastoma cells, J Neurochem. 70:1694–1703.

    Article  PubMed  CAS  Google Scholar 

  • Ugedo, L., Grenhoff, J. and Svensson, T. H., 1989, Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition, Psychopharmacology Berl. 98:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Waeber, C., Dietl, M. M., Hoyer, D., Probst, A. and Palacios, J. M., 1988, Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography, Neurosci Lett. 88:11–16.

    Article  PubMed  CAS  Google Scholar 

  • White, F. J. and Wang, R. Y., 1983, Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons, Science. 221:1054–1057.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D. E., Seroogy, K. B., Lundgren, K. H., Davis, B. M. and Jennes, L., 1995, Comparative localization of serotoninlA, IC, and 2 receptor subtype mRNAs in rat brain, J Comp Neurol. 351:357–373.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Yoder, E. J., Shih, J., Chen, K., Dias, P., Shi, L., Ji, X. D., Wei, J., Conner, J. M., Kumar, S., Ellisman, M. H. and Singh, S. K., 1998, Development and characterization of monoclonal antibodies specific to the serotonin 5-HT2A receptor, J Histochem Cytochem. 46:811–824.

    Article  PubMed  CAS  Google Scholar 

  • Yates, M., Lealce, A., Candy, J. M., Fairbaim, A. F., McKeith, I. G. and Ferrier, I. N., 1990, 5HT2 receptor changes in major depression, Biol Psychiatry. 27:489–496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bacon, G., Totterdell, S. (2002). Precise Localisation of 5-HT2A Receptors in the Rat Substantia Nigra. In: Nicholson, L.F.B., Faull, R.L.M. (eds) The Basal Ganglia VII. Advances in Behavioral Biology, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0715-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0715-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5207-5

  • Online ISBN: 978-1-4615-0715-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics