Skip to main content

Engineering Trehalose Biosynthesis Improves Stress Tolerance in Arabidopsis

  • Chapter
Plant Cold Hardiness

Abstract

Environmental stresses caused by drought and extremes of temperature are main factors limiting plant growth, productivity and distribution and up to 80 % of the total crop losses are caused by such climatic factors (Boyer, 1982). Consequently, increase in plant stress tolerance could have a major impact on agricultural productivity. Genetic engineering has recently been shown to provide new approaches for plant breeding and considerable efforts has been made to design strategies for genetic engineering of stress tolerance (Thomashow, 1999; Nuotio et al., 2001). Unfortunately, developmental, structural and physiological adaptations to stresses are often based on complex mechanisms involving a number of different genes (McCue and Hanson, 1990) and therefore not amenable to genetic engineering. However, some of the responses to abiotic stress appear to be based on relatively simple metabolic traits governed by a limited number of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alia, Hayashi, H., Chen, T.H.H. and Murata, N., 1998, Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth, Plant Cell Environ. 21:232-239.

    Article  CAS  Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G., 1993, In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants, CR Acad. Sci. Paris, Life Sci. 316: 1194-1199.

    CAS  Google Scholar 

  • Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F. and Bartels, D., 1993, The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia, Physiol Plant 87: 223-226.

    Article  CAS  Google Scholar 

  • Blázquez, M. A., Santos, E., Flores, C. L., Martinezzapater, J. M., Salinas, J. and Gancedo, C., 1998, Isolation and molecular characterization of the Arabidopsis Tpsl gene, encoding trehalose-6-phosphate synthase, Plant J. 13:685-689.

    Article  PubMed  Google Scholar 

  • Bohnert, H. J., Nelson, D. E. and Jensen, R. G., 1995, Adaptations to environmental stresses, Plant Cell 7:1099-1111.

    PubMed  CAS  Google Scholar 

  • Boyer, J. S., 1982, Plant productivity and environment, Science 218: 443-448.

    Article  PubMed  CAS  Google Scholar 

  • Cabib, E. and Leloir, L.F., 1958, The biosynthesis of trehalose phosphate, J. Biol.Chem. 231:259-275.

    PubMed  CAS  Google Scholar 

  • Colaco, C., Sen, S., Thangavelu, M., Pinder, S. and Roser, B., 1992, Extraordinary stability of enzymes dried in trehalose: simplified molecular biology, Bio/Technology 10: 1007-1011.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Crowe, L.M. and Chapman, D., 1984, Preservation of membranes in anhydrobiotic organisms: The role of trehalose, Science 223: 701.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Hoekstra, F.A. and Crowe, L.M.A., 1992, Anhydrobiosis, Annu. Rev. Plant Physiol. 54: 579-599.

    CAS  Google Scholar 

  • Drennan, P. M., Smith, M. T., Goldsworthy, D. and van Staden, J., 1993, The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw, J. Plant Physiol. 142:493-496.

    Article  CAS  Google Scholar 

  • Elbein, A., 1974, The metabolism of alpha-alpha-trehalose, Adv. Carbohydr. Chem. 30: 227-256.

    Article  CAS  Google Scholar 

  • Goddijn, O. and Smeekens, S., 1998, Sensing trehalose biosynthesis in plants, Plant J. 14: 143-146.

    Article  PubMed  CAS  Google Scholar 

  • Goddijn, O. J. M., Verwoerd, T. C., Voogd, E., Krutwagen, R. W. H. H., de Graaf, P. T. H. M., Poels, J., Vandun, K., Ponstein, A. S., Damm, B. and Pen, J., 1997, Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants, Plant Physiol. 113:181-190.

    Article  PubMed  CAS  Google Scholar 

  • Gussin, A. E. S., 1972, Does trehalose occur in Angiospermae? Phytochemistry 11: 1827-1828.

    Article  CAS  Google Scholar 

  • Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.

    Article  PubMed  CAS  Google Scholar 

  • Hare, P. D., Cress, W. A. and Van Staden, J., 1998, Dissecting the roles of osmolyte accumulation during stress, Plant, Cell and Environ. 21: 535-553.

    Article  CAS  Google Scholar 

  • Hayashi, H., Mustardy, L., Deshium, P., Ida, M. and Murata, N., 1997, Transformation of Arabidopsis thaliana with the codA gene for choline oxidase - accumulation of glycine betaine and enhanced tolerance to salt and cold stress, Plant J. 12:133-142.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, F. A., Wolkers, W. F., Buitink, J., Golovina, E. A., Crowe, J. H. and Crowe, L. M., 1997, Membrane stabilization in the dry state, Comp. Biochem. Physiol. 117: 335-341.

    Article  Google Scholar 

  • Holmström, K-O., Mäntylä, E., Welin, B., Mandal, A., Palva, E. T., Tunnela, O. E. and Londesborough, J., 1996, Drought tolerance in tobacco, Nature 379: 683-684.

    Article  Google Scholar 

  • Kishor, P. B. K., Hong, Z., Miao, G. H., Hu, C. A. A. and Verma, D. P. S., 1995, Overexpression pf DELTA-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants, Plant Physiol. 108:1387-1394.

    PubMed  CAS  Google Scholar 

  • Lilius, G., Holmberg, N. and Bülow, L. (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnol. 14: 177-180.

    Article  CAS  Google Scholar 

  • Londesborough, J. and Vuorio, O., 1991, Trehalose-6-phpsphate synthase/phosphatase complex from baker's yeast: purification of a proteolytically activated form, J. Gen. Microbiol. 137: 323-330.

    Article  PubMed  CAS  Google Scholar 

  • McCue, K. F. and Hanson, A. D., 1990, Drought and salt tolerance: towards understanding and application, Trends Biotechnol. 8: 358-362.

    Article  CAS  Google Scholar 

  • Müller, J., Aeschbacher, R.A., Wingler, A., Boiler, T. and Wiemken, A, 2001, Trehalose and trehalase in Arabidopsis, Plant Physol. 125: 1086-1093.

    Article  Google Scholar 

  • Müller, J., Boiler, T. and Wiemken, A., 1995a, Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea, Planta 197:362-368.

    Google Scholar 

  • Müller, J., Boiler, T. and Wiemken, A., 1995b, Trehalose and trehalase in plants: recent developments, Plant Science 112:1-9.

    Article  Google Scholar 

  • Nuotio, S., Heino, P. and Palva, E. T., 2001, Signal traansduction under low-temperature stress, in: Crop Responses and Adaptations in Temperature Stress, A. S. Basra, ed., Food Products Press, Binghamton, New York, pp. 151-176.

    Google Scholar 

  • Palta, J. and Weiss, L.S., 1993, Ice formation and freezing injury: an overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants, in: Advances in plant cold hardiness, P. H. Li and L. Christerrson, eds., CRC Press, Boca Raton, Florida, USA, pp. 143-176.

    Google Scholar 

  • Pilon-Smits, E. A. H., Ebskamp, M. J. M, Paul, M. J., Jeuken, M. J. W., Weisbeek, P.J. and Smeekens, S. C. M., 1995, Improved performance of transgenic fructan-accumulation tobacco under drought stress, Plant Physiol. 107: 125-130.

    PubMed  CAS  Google Scholar 

  • Pilon-Smits, E. A. H., Terry, N., Sears, T., Kim, H., Zayed, A., Hwang, S., Van Dun, K., Voogd, E., Verwoerd, T. C., Krutwagen, R. W. H. H. and Goddijn, O. J. M., 1998, Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress, J. Plant Physiol. 152: 525-532.

    Article  CAS  Google Scholar 

  • Romero, C., Bellés, J. M., Vayá, J. L., Serrano, R. and Culláñez-Macià, F. A., 1997, Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance, Planta 201:293-297.

    Article  PubMed  CAS  Google Scholar 

  • Roser, B. and Colaco, C., 1993, A sweeter way to fresher food, New Scientist 15:25-28.

    Google Scholar 

  • Sakamoto, A., Alia and Murata, N., 1998, Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold, Plant. Mol. Biol. 38: 1011-1019.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, A., Valverde, R., Alia, Chen, T.H.H. and Murata, N., 2000, Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants, Plant J. 22:449-453.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, R., Culiañz-Maciá, F.A. and Morena, V., 1999, Genetic engineering of salt and drought tolerance with yeast regulatory genes, Sci. Hortic. 78: 261 -269.

    Article  CAS  Google Scholar 

  • Singer, M. A. and Lindquist, S., 1998, Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose, Trends Biotechnol. 16: 460-468.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N., 1998, Plant resistance to environmental stress, Curr. Opin. Biotechnol. 9: 214-219.

    Article  PubMed  CAS  Google Scholar 

  • Strøm, A. R. and Kaasen, I., 1993, Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression, Mol. Microbiol. 8: 205-210.

    Article  PubMed  Google Scholar 

  • Sukumaran, N.P. and Weiser, C.J., 1972, An excised leaflet test for evaluating potato frost tolerance, Hort. Sci. 7,467-468.

    Google Scholar 

  • Tarczynski, M. C., Jensen, R. G. and Bohnert, H. J., 1992, Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol, Proc. Natl. Acad. Sci. USA 89: 2600-2604.

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski, M. C., Jensen, R. G. and Bohnert, H. J., 1993, Stress protection of transgenic tobacco by production of the osmolyte mannitol, Science 259: 508-510.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow, M.F., 1999, Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50,571-599.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, G., Aeschbacher, R. A., Müller, J., Boiler, T. and Wiemken, A., 1998, Trehalose-6-phophate phosphatases from Arabidopsis thaliana - identification by functional complementation of yeast TPS2 mutant, Plant J. 13: 673-683.

    Article  PubMed  CAS  Google Scholar 

  • Vuorio, E., Kalkkinen, N. and Londesborought, J., 1993, Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from yeast Saccharomyces cerevisiae, Eur. J. Biochem. 216: 849-861.

    Article  PubMed  CAS  Google Scholar 

  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N., 1982, Living with water stress:evolution of osmolyte systems, Science 217:1214-1222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tamminen, I. et al. (2002). Engineering Trehalose Biosynthesis Improves Stress Tolerance in Arabidopsis. In: Li, P.H., Palva, E.T. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0711-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0711-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5205-1

  • Online ISBN: 978-1-4615-0711-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics