Skip to main content

Selection of Remotely Sensed Data

  • Chapter
Remote Sensing of Forest Environments

Abstract

An increasing number of sensors are available for forest ecologists and managers seeking to map attributes of forest canopy cover, forest structure and composition, and their dynamics. This Chapter seeks to put these advances within the context of the needs of forest managers and scientists. To do so, we review the basic physics behind a variety of imagery types, discuss fundamental limitations and trade-offs that apply to all remotely sensed data, review sensor options for several established and emerging technologies, and present our approach for matching imagery and attributes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M. J., Kahle, A. B., Palluconi, F. D., & Schieldge, J. P. (1984). Geologic mapping using thermal images. Remote Sensing of Environment, 16, 13–33.

    Article  Google Scholar 

  • Asner, G. P., Braswell, B. H. Schimel, D. S., & Wessman, C. (1998). Ecological research needs from multiangle remote sensing data. Remote Sensing of Environment, 63, 155–165.

    Article  Google Scholar 

  • Bachman, C. G. (1979). Laser Radar Systems and Techniques. Artech House, MA.

    Google Scholar 

  • Baltsavias, E. P. (1999). Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry & Remote Sensing, 54, 164–198.

    Article  Google Scholar 

  • Baltzer, H. (2001) Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR). Progress in Physical Geography, 25, 159–177.

    Google Scholar 

  • Banner, A. V., & Ahern, F. J. (1995). Incidence angle effects on the interpretability of forest clearcuts using airborne C-HH SAR imagery. Canadian Journal of Remote Sensing, 21, 64–66.

    Google Scholar 

  • Brock, J. C, & Wright, C. W. (2000). Preliminary results from a NASA Experimental Advanced Airborne Research LIDAR (EAARL) survey of Pacific Reef in Biscayne National Park, Florida. Proc. 9 th International Coral Reef Symposium, 233. USGS Center For Coastal Geology, Florida.

    Google Scholar 

  • Chauhan, N. S. (1997). Soil Moisture Estimation Under a Vegetation Cover: Combined Active Passive Microwave Remote Sensing Approach. International Journal of Remote Sensing, 18,1079–1097.

    Article  Google Scholar 

  • Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153–162.

    Article  Google Scholar 

  • Cihlar, J., Pultz, T. J., & Gray, A. L. (1992). Change detection with synthetic aperture radar. International Journal of Remote Sensing, 13, 401–414.

    Article  Google Scholar 

  • Cohen, W., Harmon, M.,Wallin, D., & Fiorella, M. (1996). Two decades of carbon flux from forests of the Pacific Northwest. Bioscience, 46, 836–844.

    Article  Google Scholar 

  • Cohen, W., Spies, T. A., & Fiorella, M. (1995). Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. International Journal of Remote Sensing, 16,721–746.

    Article  Google Scholar 

  • Cohen, W., & Justice, C. (1999). Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sensing of Environment, 70, 1–3.

    Article  Google Scholar 

  • Cohen, W., Maiersperger, T. K., Spies, T. T. A., & Oetter., D. R. (2001). Modeling Forest Cover Attributes as Continuous Variables in a Regional Context with Thematic Mapper Data. International Journal of Remote Sensing, 22, 2279–2310.

    Google Scholar 

  • Crist, E. P., & Cicone., R. C. (1983). Investigations of thematic mapper data dimensionality and features using field spectrometer data. Proc. Seventeenth Int. Symp. Remote Sensing of Environment, 3. Environ. Res. Inst. Michigan, Ann Arbor MI, 9–13 May.

    Google Scholar 

  • Dobson, M. C, Pierce, L., Sarabandi, K., Ulaby, F. T., & Sharik, T. (1992). Preliminary analysis of ERS-SAR for forest ecosystem studies. IEEE Transactions on Geoscience and Remote Sensing, 30, 412–415.

    Article  Google Scholar 

  • Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., Chazdon, R. L., Weishample, J. F., & Prince, S. (2001). Estimation of Tropical Forest StructuralCharacteristics using Large-footprint Lidar. Remote Sensing of Environment, 79, 305–319.

    Article  Google Scholar 

  • Drieman, J. A. (1994). Forest cover typing and clearcut mapping in Newfoundland with C-band SAR. Canadian Journal of Remote Sensing, 20, 11–16.

    Google Scholar 

  • Edwards, G., & Rioux, S. (1995). A detailed assessment of relative displacement error in cutover boundaries derived from airborne C-band SAR. Canadian Journal of Remote Sensing, 21,185–197.

    Google Scholar 

  • Eineder, M., Bamler, R., Adam, N., Suchandt, S., & Breit, H. (2000). Analysis of SRI M interferometric X-Band Data: First Results. Proceedings of the International Geoscience and Remote Sensing Symposium 2000, 6, 2593–2595. Honolulu, Hawaii.

    Google Scholar 

  • Eppler, D. T., & Farmer, L. D. (1991). Texture analysis of radiometric signatures of new sea ice forming in Arctic lands. IEEE Transactions on Geoscience and Remote Sensing, 29, 233–241.

    Article  Google Scholar 

  • Flood, M., & Gutelis, B. (1997). Commercial implications of topographic terrain mapping using scanning airborne laser radar. Photogrammetric Engineering and Remote Sensing, 63, 327–366

    Google Scholar 

  • Franklin, S. E., Lavigne, M. B., Wilson, B. A., & Hunt, E. R. (1994). Empirical relations between balsam fir (Abies balsamed) forest stand conditions and ERS-1 SAR data in western Newfoundland. Canadian Journal of Remote Sensing, 20, 124–130.

    Google Scholar 

  • Franklin, S. E., Bowers, W. W., & Ghitter, G. (1995). Discrimination of adelgid-damage on single balsam fir trees with aerial remote sensing data. International Journal of Remote Sensing, 16,2779–2794.

    Article  Google Scholar 

  • Franklin, S. E., Moskal, L. M., Lavigne, M. B., & Pugh, K. (2000). Interpretation and classification of partially harvested forest stands in the Fundy Model Forest using multitemporal Landsat TM. Canadian Journal of Remote Sensing, 26, 318–333.

    Google Scholar 

  • Gates, D. M., & Tantraporn W. (1952). The reflectivity of deciduous trees and herbaceous plants in the infrared to 25 microns. Science, 115, 613–616.

    Article  Google Scholar 

  • Gong, P., Pu, R., &Yu, B. (1997). Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sensing of Environment, 62, 189–200.

    Article  Google Scholar 

  • Hall, R. J., Kruger, A. R., Scheffer, J., Titus, S. J., & Moore, W. C. (1989). A statistical evaluation of Landsat TM and MSS for mapping forest cutovers. Forest Chronicle, 65, 441–449.

    Google Scholar 

  • Harding, D. J., Lefsky, M. A., & Parker, G. G. (2001). Lidar altimeter measurements of canopy structure: methods and validation for closed-canopy broadleaf forest. Remote Sensing of the Environment, 76, 283–297.

    Article  Google Scholar 

  • Hensley, S., Chapin, E., & Bartman, R. K. (1999). Baseline Calibration Of The Geosar Interferometric Mapping Instrument. Presented at the Committee on Earth Observing Satellites. Toulouse, France. October 1999.

    Google Scholar 

  • Hudak, A. T., Lefsky, M. A., Cohen, W. B., & Berterretche, M. (2002). Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment, 82, 398–417.

    Article  Google Scholar 

  • Hyppa, J., Huuppa, H., Inkinen, M, & Engdahl, M. (1998). Verification of the potential of various remote sensing data sources for forest inventory. Proceedings of IEEE Geosciences and Remote Sensing Society, 1812–1814. July 6–10, 1998, Seattle Washington. IEEE, Piscataway, NJ.

    Google Scholar 

  • Iverson, L. R., Cook, E. A., & Graham, R. L. (1989). A technique for extrapolating and validating forest cover across large regions: Calibrating AVHRR data with TM data. International Journal of Remote Sensing, 10, 1805–1812.

    Article  Google Scholar 

  • Jakubauskas, M. E, Lulla, K. P., & Mausel, P. W. (1990). Assessment of vegetation change in a fire-altered forest landscape. Photogrammetric Engineering and Remote Sensing, 56, 371–377.

    Google Scholar 

  • Justice, C, Vermote, E., Townshend, J., DeFries, R., Roy, D., Hall, D., Salomonson, V., Privette, J., Riggs, G., Strahler, A., Lucht, W., Myneni, R., Knyazikhin, Y., Running, S., Nemani, R., Wan, Z., Huete, A., van Leeuwen, W., Wolfe, R., Giglio, L., Muller, J.-P., Lewis, P., & Barnsley, M. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36, 1228–1249.

    Article  Google Scholar 

  • Kasischke, E. S., Bourgeau-Chavez, L. L., Christensen, N. L., & Haney, E. (1994). Observations on the sensitivity of ERS-1 SAR image intensity to changes in aboveground biomass in young loblolly pine forests. International Journal of Remote Sensing, 15, 3–16.

    Article  Google Scholar 

  • Kauth, R. J., & Thomas, G. S. (1976). The tasseled cap-A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proc. Second Ann. Symp. Machine Processing of Remotely Sensed Data. Purdue U. Lab. App. Remote Sens., West Lafayette IN, 6 June-2 July.

    Google Scholar 

  • Kimes, D. S., Kerber, A. G., & Sellers, P. J. (1993). Spatial averaging errors in creating hemispherical reflectance (albedo) maps from directional reflectance data. Remote Sensing of Environment, 45, 85–94.

    Article  Google Scholar 

  • Kramer, H. J. (2001) Observation of the earth and its environment: survey of missions and sensors (4th ed.). Springer-Verlag, Berlin.

    Google Scholar 

  • Lefsky, M. A., Harding, D., Cohen, W. B., & Parker, G. G. (1999a). Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of the Environment, 67, 83–98.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Acker, S. A., Spies, T. A., Parker, G. G., & Harding, D. (1999b). Lidar remote sensing of biophysical properties and canopy structure of forest of Douglas-fir and western hemlock. Remote Sensing of Environment, 70, 339–361.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., & Spies, T. A. (2001). An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping in Douglas-fir forests of western Oregon. Canadian Journal of Forest Research, 31, 78–87.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies. Bioscience, 52, 19–30.

    Article  Google Scholar 

  • Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30, 276–292.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image interpretation. John Wiley and Sons, New York. Loveland, T. R., Merchant, J. W., Ohlen, D. O., & Brown, J. F. (1991). Development of a land-cover characteristics database for the conterminous U.S. Photogrammetric Engineering & Remote Sensing, 57, 1453–1463.

    Google Scholar 

  • Luckman, A., Baker, J., Honzak, M., & Lucas, R. (1998). Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics. Remote Sensing of Environment, 63, 126–139.

    Article  Google Scholar 

  • Luvall, J. C, & Holbo, H. R. (1991). Thermal remote sensing methods in landscape ecology. Turner,  M. G., & RGardner,  R. H. (Eds.). Quantitative Methods in Landscape Ecology, 127–152. Springer-Verlag, New York NY.

    Google Scholar 

  • Maclean, G. A., & Krabill, W. B. (1986). Gross-merchantable timber volume estimation using an airborne LIDAR system. Canadian Journal of Remote Sensing, 12, 7–18.

    Google Scholar 

  • Martin, M., & Aber, J. (1997). High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecological Applications, 7, 431–443.

    Article  Google Scholar 

  • Martin, M., Newman, S., Aber, L., & Congalton, R. (1998). Determining forest species composition using high resolution remote sensing data. Remote Sensing of Environment, 65, 249–254.

    Article  Google Scholar 

  • Masuoka, E., Fleig, A., Wolfe, R., & Patt, F. (1998). Key characteristics of MODIS data products. IEEE Transactions on Geoscience and Remote Sensing, 36, 1313–1323.

    Article  Google Scholar 

  • Means, J. E., Acker, S. A., Harding, D. J., Blair, J. B., Lefsky, M. A., Cohen, W. B., Harmon, M., & McKee, W. A. (1999). Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sensing of the Environment, 67, 298–308.

    Article  Google Scholar 

  • Moisen, G., & Edwards, T. C, Jr. (1999). Use of generalized linear models and digital data in a forest inventory of northern Utah. Journal of Agricultural, Biological, and Environmental Statistics, 4, 372–390.

    Article  MathSciNet  Google Scholar 

  • Mouginis-Mark, P. J., Garbeil, H., & Flament, P. (1994). Effects of viewing geometry on AVHRR observations of volcanic thermal anomalies. Remote Sensing of Environment, 48, 51–60.

    Article  Google Scholar 

  • Naesset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal Photogrammetry and Remote Sensing, 52, 49–56.

    Article  Google Scholar 

  • Nelson, R. F., Krabill, W. B., & Maclean, G. A. (1984). Determining forest canopy characteristics using airborne laser data. Remote Sensing of Environment, 15, 201–212.

    Article  Google Scholar 

  • Nelson, R. F., Krabill, W. B., & Tonelli, J. (1988). Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment, 24, 247–267.

    Article  Google Scholar 

  • Nilsson, M. (1996). Estimation of Tree Heights and Stand Volume Using an Airborne Lidar System. Remote Sensing of Environment, 56, 1–7.

    Article  MathSciNet  Google Scholar 

  • Oetter, D., Cohen, W., Berterretche, M., Maiersperger, T., & Kennedy, R. (2001). Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment, 76, 139–155.

    Article  Google Scholar 

  • Pitt, D. G., Wagner, R. G., Hall, R. J., King, D. J., Leckie, D. G., & Runesson, U. (1997). Use of remote sensing for forest vegetation management: A problem analysis. Forestry Chronicle, 73, 459–477.

    Google Scholar 

  • Ranchin, T., & Wald, L. (2000). Fusion of high spatial and spectral images: the ARSIS concept and its implementation. Photogrammetric Engineering & Remote Sensing, 66, 49–61.

    Google Scholar 

  • Ranson, K. J., & Williams, D. L. (1992). Remote sensing technology for forest ecosystem analysis. Shugart, H. H., Leemans, R., &  Bonan, G. B. (Eds.). A Systems Analysis of the Global Boreal Forest, 267–290.Cambridge U. Press, New York NY.

    Google Scholar 

  • Ranson, K. J., Irons, J. R., & Williams, D. L. (1994). Multispectral bidirectional reflectance of northern forest canopies with the advanced solid-state array spectroradiometer (ASAS). Remote Sensing of Environment, 47, 276–289.

    Article  Google Scholar 

  • Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Imagery Analysis: An Introduction. Springer Berlin.

    Google Scholar 

  • Rignot, E. J., & Way, J. B. (1994). Monitoring freeze-thaw cycles along north-south Alaskan transects using ERS-1 SAR. Remote Sensing of Environment, 49, 131–137.

    Article  Google Scholar 

  • Rignot, E. J., Way, J. B., McDonald, K., Viereck, L., Williams, C, Adamas, P., Payne, C, Wood, W., & Shi, J. (1994). Monitoring of environmental conditions in taiga forests using ERS-1 SAR. Remote Sensing of Environment, 49, 145–154.

    Article  Google Scholar 

  • Ritchie, J. C, Everitt, J. H., Escobar, D. E., Jackson, T. J., & Davis, M. R. (1992). Airborne laser measurements of rangeland canopy cover and distribution. Journal of Range Management, 45, 189–193.

    Article  Google Scholar 

  • Ritchie, J. C, Humes, K. S., & Weltz, M. A. (1995). Laser altimeter measurements at Walnut Gulch watershed, Arizona. Journal of Soil and Water Conservation, 50, 440–442.

    Google Scholar 

  • Ritchie, J. C, Menenti, M., & Weltz, M. A. (1996). Measurements of land surface features using an airborne laser altimeter: The HAPEX-Sahel experiment. International Journal of Remote Sensing, 17,3705–3724.

    Article  Google Scholar 

  • Rodriguez, E., & Martin, J. M. (1992). Theory and design of interferometric synthetic aperture radars. IEEE Proceedings-F Radar and Signal Processing, 139, 147–159.

    Article  Google Scholar 

  • Rodriguez, E., Michel, T.R., & Harding, D.J. 2002. Interferometric measurements of canopy height characteristics for coniferous forests, IEEE Transactions on Geoscience and Remote Sensing, (In Review)

    Google Scholar 

  • Rosen, P.A., Hensley, S., Joughin, I. R., Li, F.K., Madsen, S.N., Rodriguez, E., & Goldstein, R.M. (2000). Synthetic aperture radar interferometry — Invited paper, Proc. IEEE 88, 3, 333–382.

    Article  Google Scholar 

  • Running, S. W., Justice, C. O., Salmonson, V., Hall, D., Barker, J., Kaufmann, Y, J., Strahler, A. H., Huete,A. R., Muller,J. -P.,  Vanderbilt, V., Wan, Z. M., Teillet,  P., & Carneggie, D. (1994). Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15, 3587–3620.

    Article  Google Scholar 

  • Sader, S. A. (1986). Analysis of effective radiant temperatures in a Pacific Northwest forest using thermal infrared multispectral scanner data. Remote Sensing of Environment, 19, 105–115.

    Article  Google Scholar 

  • Sader, S.A. (1987). Forest biomass, canopy structure, and species composition relationships with multipolarization L band synthetic aperture radar data. Photogrammetric Engineering and Remote Sensing, 53, 193–202.

    Google Scholar 

  • Sader, S. S., Waide, R. B., Lawrence, W. T., & Joyce, A. T. (1989). Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sensing of Environment, 28, 143–156.

    Article  Google Scholar 

  • Sader, S. A., Stone, T. A., & Joyce, A. T. (1990). Remote sensing of tropical forests: An overview of research and applications using non-photographic sensors. Photogrammetric Engineering & Remote Sensing, 56, 1343–1351.

    Google Scholar 

  • Schriever, J. R., & Congalton, R. G. (1995). Evaluating seasonal variability as an aid to cover-type mapping from Landsat Thematic Mapper data in the Northeast. Photogrammetric Engineering & Remote Sensing, 61, 321–327.

    Google Scholar 

  • Schowengerdt, R. A. (1997). Remote Sensing: Models and methods for image processing.Academic Press, San Diego, CA.

    Google Scholar 

  • Spanner, M. A., Pierce, L. L., Peterson, D. L., & Running, S. W. (1990). Remote sensing of temperate coniferous forest leaf area index: The influence of canopy closure, understory vegetation and background reflectance. International Journal of Remote Sensing, 11, 95–111.

    Article  Google Scholar 

  • Spanner, M A., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J., & Gong, P. (1994). Remote sensing of seasonal leaf area index across the Oregon transect. Ecological Applications, 4, 258–271.

    Article  Google Scholar 

  • Strahler, A. H., Woodcock, C. E., & Smith, J. A. (1986). On the nature of models in remote sensing. Remote Sensing of Environment, 20,121–139.

    Article  Google Scholar 

  • Townsend, J.R.G., Goff, T. E., & Tucker, C. J. (1985). Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Transactions on Geoscience and Remote Sensing, 23, 888–895.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Tucker, C. J., Holben, B. N., Elgin, J. H., & McMurtrey, J. E. (1980). Relationship of spectral data to grain yield variation. Photogrammetric Engineering & Remote Sensing, 46, 657–666.

    Google Scholar 

  • Tucker, C. J., Vanpraet, C, Boerwinkel, E., & Gaston, A. (1983). Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sensing of Environment, 13, 461–474.

    Article  Google Scholar 

  • Tucker, C. J. (1996). History of the use of AVHRR data for land applications. D’Souza,  G., Belward, A. S., & Malingeau, J. P. (Eds.). Advances in the use of NOAA AVHRR data for land . Wapplications, 1–19. ECSC, EEC and EAEC. Brussels and Luxembourg.

    Google Scholar 

  • Ulaby F.T., & Dobson, M. C. (1993). Radar response of vegetation: an overview. Proceedings of the Third Space borne Imaging Radar Symposium, 151–183. Jet Propulsion Lab Publications 93–16.

    Google Scholar 

  • Van der Meer, F. (1994). Extraction of mineral absorption features from high-spectral resolution data using non-parametric geostatistical techniques. International Journal of Remote Sensing, 15,2193–2214.

    Article  Google Scholar 

  • Vane, G., & Goetz, A. F. (1993). Terrestrial imaging spećtometry: Current status, future trends. Remote Sensing of Environment, 44, 117–126.

    Article  Google Scholar 

  • Wang, Y., Kasischke, E. S., Melack, J. M., Davis, F. W., & Christensen, N. L. (1994). The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter. Remote Sensing of Environment, 49, 25–31.

    Article  Google Scholar 

  • Waring, R. H., Way, J., Hunt, E. R., Morrissey, L., Ranson, K. J., Weishampel, J. F., Oren, R., & Franklin, S. E. (1995). Imaging radar for ecosystem studies. BioScience, 45, 715–723.

    Article  Google Scholar 

  • Way, J., Paris, J., Dobson, M., McDonald, K., Ulaby, F., Weber, J., Ustin, S., Vanderbilt, V., & Kasischke, E. (1991). Diurnal change in trees as observed by optical and microwave sensors: The EOS synergism study. IEEE Transactions on Geoscience and Remote Sensing, 29, 807–821.

    Article  Google Scholar 

  • Way, J., Rignot, E. J., McDonald, K. C, Oren, R., Kwok, R., Bonan, G., M. Dobson, M. C, L. Viereck, A., & Roth, J. E. (1994). Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models. IEEE Transactions on Geoscience and Remote Sensing, 32, 353–370.

    Article  Google Scholar 

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning-an introduction and overview. ISPRS Journal of Photogrammetry & Remote Sensing, 54, 68–82.

    Article  Google Scholar 

  • Wolter, P. T., Mladenoff, D. J., Host, G. E., & Crow, T. R. (1995). Improved forest classification in the Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering & Remote Sensing, 61, 1129–1143.

    Google Scholar 

  • Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21, 311–332.

    Article  Google Scholar 

  • Wulder, M. (1998). Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography 22, 449–476

    Google Scholar 

  • Zagolski, F. P., Pinel, V., Romier, J., Alcayde, D., Fontanari, J., Gastellu-Etchegorry, J. P., Giordano, G., Marty, G., Mougin, E., & Joffre, R. (1996). Forest canopy chemistry with high spectral resolution remote sensing. International Journal of Remote Sensing, 17, 1107–1128.

    Article  Google Scholar 

  • Zhu, Z., & Evans, D. L. (1992). Mapping midsouth forest distributions. Journal of Forestry, 90, 27–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lefsky, M.A., Cohen, W.B. (2003). Selection of Remotely Sensed Data. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics