Skip to main content

Regulation of Immune Responses by CD38 and cADPR

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

CD38 was identified more than 20 years ago as a cell surface protein expressed on leukocyte subsets [1, 2]. Over the last decade, antibodies to human CD38 have been used to classify tumors from Multiple Myeloma [3, 4] and Chronic Lymphocytic Leukemia patients [5, 6], to identify which HIV+ patients will develop AIDS [7] and to subset a variety of leukocyte populations including hematopoietic progenitors [8, 9], germinal center B cells [10, 11] and regulatory T cells [12, 13]. However, despite the clear utility of using anti-CD38 antibodies as diagnostic and prognostic tools, it was unclear whether CD38 itself played an important functional role on normal lymphocytes. Since CD38 is expressed on the plasma membrane, it was postulated that CD38 was involved in leukocyte signaling or adhesion [14-16]. Although numerous experiments demonstrated that antibody mediated crosslinking of CD38 activated a variety of different signaling pathways in lymphocytes (reviewed in ref. [17, 18]), it was unclear how CD38 initiated signal transduction since the cytoplasmic tail of CD38 does not contain any known signaling motifs [2, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reinherz EL. Kung PC. Goldstein G. Levey RH and Schlossman SF. 1980. Discrete stages of intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of the T lineage. Proc. Natl. Acad. Sci. USA. 11: 1588–1592.

    Article  Google Scholar 

  2. Jackson DG and Bell JI. 1990. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144: 2811–2815.

    PubMed  CAS  Google Scholar 

  3. Kawano MM. Mihara K. Tsujimoto T. Huang N and Kuramoto A. 1995. A new phenotypic classification of bone marrow plasmacytosis. Int. J. Hematol. 61: 179–188.

    Article  PubMed  CAS  Google Scholar 

  4. San Miguel JF. Garcia-Sanz R. Gonzalez M. Moro MJ, Hernandez JM, et al. 1995. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood 85: 448–455.

    PubMed  CAS  Google Scholar 

  5. Damle RN. Wasil T. Fais F. Ghiotto F. Valetto A, et al. 1999. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: 1840–1847.

    PubMed  CAS  Google Scholar 

  6. Ibrahim S. Keating M. Do KA. O’Brien S, Huh YO, et al. 2001. CD38 expression as an important prognostic factor in B-cell derived lymphocytic leukemia. Blood 98: 181–186.

    Article  PubMed  CAS  Google Scholar 

  7. Liu Z, Cumberland WG, Hultin LE. Prince HE, Detels R and Giorgi JV. 1997. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the multicenter AIDS cohort study thanCD4+ cell count soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 16: 83–92.

    Google Scholar 

  8. Terstappen LWMM, Huang S. Safford M, Landsorp PM and Loken MR. 1991. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+ CD38+ progenitor cells. Blood 11: 1218–1227.

    Google Scholar 

  9. Randall TD, Lund FE, Howard MC and Weissman IL. 1996. Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 87: 4057–4067.

    PubMed  CAS  Google Scholar 

  10. Liu YJ, Malisan F, de Bouteiller O, Guret C. Lebecque S, et al. 1996. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4: 241–250.

    Article  PubMed  CAS  Google Scholar 

  11. Oliver AM. Martin F and Kearney JF. 1997. Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol. 158: 1108–1115.

    PubMed  CAS  Google Scholar 

  12. Bean AGD. Godfrey DI, Ferlin WG, Santos-Argumedo L, Parkhouse RME, et al. 1995. CD38 expression on mouse T cells: CD38 defines functionally distinct subsets of ap TCR+CD4CD8+ thymocytes. Int. Immunol. 7: 213–221.

    Article  PubMed  CAS  Google Scholar 

  13. Read S, Mauze S, Asseman C. Bean A, Coffman R and Powrie F. 1998. CD38+ CD45RBlow CD4+ T cells: a population of T cells with immune regulatory activities in vitro. Eur. J. Immunol. 28: 3435–3447.

    Article  PubMed  CAS  Google Scholar 

  14. Funaro A, Spagnoli GC, Ausiello CM, Alessio M, Roggero S, et al. 1990. Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J. Immunol. 145:2390–2396.

    PubMed  CAS  Google Scholar 

  15. Malavasi F, Funaro A. Alessio M, De Monte LB, Ausiello CM, et al. 1992. CD38: A multi-lineage cell activation molecule with a split personality. Int. J. Clin. Lab. Res. 22: 73–80.

    Article  PubMed  CAS  Google Scholar 

  16. Malavasi F, Funaro A, Roggero S. Horenstein A, Calosso L and Mehta K. 1994. Human CD38: a glycoprotein in search of a function. Immunol. Today 15: 95–97.

    Article  PubMed  CAS  Google Scholar 

  17. Mehta K, Shahid U and Malavasi F. 1996. Human CD38, a cell-surface protein with multiple functions. FASEB J. 10: 1408–1417.

    PubMed  CAS  Google Scholar 

  18. Lund FE. Cockayne DA. Randall TD, Solvason N, Schuber F and Howard MC. 1998. CD38: A new paradigm in lymphocyte activation and signal transduction. Immunol. Rev. 161:79–93.

    Article  PubMed  CAS  Google Scholar 

  19. Harada N. Santos-Argumedo L, Chang R, Grimaldi JC, Lund FE, et al. 1993. Expression cloning of a cDNA encoding a novel murine B cell activation marker. J. Immunol. 151: 3111–3118.

    PubMed  CAS  Google Scholar 

  20. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, et al. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  21. Takasawa S. Togho A, Noguchi N, Koguma T, Nata K, et al. 1993. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268: 26052–4.

    PubMed  CAS  Google Scholar 

  22. Summerhill RJ, Jackson DG and Galione A. 1993. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 335: 231–233.

    Article  PubMed  CAS  Google Scholar 

  23. Zocchi E. Franco L, Guida L, Benatti U, Bargellesi A, et al. 1993. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribosyl hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Comm. 196: 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  24. Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.

    Article  PubMed  CAS  Google Scholar 

  25. Kumagai M. Coustan-Smith E. Murray DJ, Silvennoinen O, Murti KG, et al. 1995. Ligation of CD38 suppresses human B lymphopoiesis. J. Exp. Med. 181: 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  26. Lund FE. Muller-Steffner HM. Yu N. Stout CD, Schuber F and Howard M. 1999. CD38 signaling is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J. Immunol. 162: 2693–2702.

    PubMed  CAS  Google Scholar 

  27. Kitanaka A, Suzuki T, Ito C, Nishigaki H. Coustan-Smith E, et al. 1999. CD38-mediated signaling events in murine pro-B cells expressing human CD38 with or without its cytoplasmic domain. J. Immunol. 162: 1952–1958.

    PubMed  CAS  Google Scholar 

  28. Partida-Sanchez S, Cockayne DA. Monard S. Jacobson EL, Oppenheimer N, et al. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  29. Cockayne D, Muchamuel T. Grimaldi JC. Muller-Steffner H, Randall TD. et al. 1998. Mice deficient for the ecto-NAD+ glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92: 1324–1333.

    PubMed  CAS  Google Scholar 

  30. Shubinsky G and Schlesinger M. 1997. The CD38 lymphocyte differentiation marker-New insight into its ectoenzymatic activity and its role as a signal transducer. Immunity 7:315–324.

    Article  PubMed  CAS  Google Scholar 

  31. Santos-Argumedo L. Teixeira C. Preece G. Kirkham PA and Parkhouse RME. 1993. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J. Immunol. 151: 3119–3130.

    PubMed  CAS  Google Scholar 

  32. Santos-Argumedo L. Lund FE. Heath AW, Solvason N. Wu WW, et al. 1994. CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regulator of CD38 induced signal transduction. Int. Immunol. 7: 163–170.

    Article  Google Scholar 

  33. Lund FE. Solvason NW. Cooke MP. Heath AW, Grimaldi JC, et al. 1995. Signaling through murine CD38 is impaired in antigen receptor unresponsive B cells. Eur. J. Immunol. 25: 1338–1345.

    Article  PubMed  CAS  Google Scholar 

  34. Lund FE. Yu N. Kim K-M, Reth M and Howard MC. 1996. Signaling through CD38 augments B cell antigen receptor (BCR) responses and is dependent on BCR expression. J. Immunol. 157: 1455–1467.

    PubMed  CAS  Google Scholar 

  35. Yamashita Y. Miyake K. Kikuchi Y. Takatsu K, Noda S and Kosugi A. 1995. A monoclonal antibody against a murine CD38 homologue delivers a signal to B cells for prolongation of survival and protection against apoptosis in vitro: unresponsiveness of X-linked immunodeficient B cells. Immunology 85: 248–255.

    PubMed  CAS  Google Scholar 

  36. Kikuchi Y. Yasue T. Miyake K. Kimoto M and Takatsu K. 1995. CD38 ligation induces tyrosine phosphorylation of Bruton tyrosine kinase and enhanced expression of interleukin 5-receptor a chain: Synergistic effects with interleukin 5. Proc. Natl. Acad. Sci. USA. 92: 11814–11818.

    Article  PubMed  CAS  Google Scholar 

  37. Yasue T. Nishizumi H. Aizawa S. Yamamoto T, Miyake K, et al. 1997. A critical role of Lyn and Fyn for B cell responses to CD38 ligation and interleukin 5. Proc. Natl. Acad. Sci. USA. 94: 10307–10312.

    Article  PubMed  CAS  Google Scholar 

  38. Kitanaka A. Ito C. Nishigaki H and Campana D. 1996. CD38 mediated growth suppression of B-cell progenitors requires activation of phosphatidylinositol 3-kinase and involves its association with the protein product of the c-cbl proto-oncogene. Blood 88: 590–598.

    PubMed  CAS  Google Scholar 

  39. Silvennoinen O. Nishigaki H. Kitanaka A, Kumagai M, Ito C, et al. 1996. CD38 signal transduction in human B cell precursors. J. Immunol. 156: 100–107.

    PubMed  CAS  Google Scholar 

  40. Kitanaka A. Ito C. Coustan-Smith E and Campana D. 1997. CD38 ligation in human B cell progenitors triggers tyrosine phosphorylation of CD 19 and association of CD 19 with Lyn and phosphatidylinositol 3-kinase. J. Immunol. 159: 184–192.

    PubMed  CAS  Google Scholar 

  41. Zupo S. Rugari E. Dono M. Taborelli G, Malavasi F and Ferrarini M. 1994. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur. J. Immunol. 24: 1218–1222.

    Article  PubMed  CAS  Google Scholar 

  42. Funaro A, Morra M, Calosso L, Zini MG, Ausiello CM and Malavasi F. 1997. Role of the human CD38 molecule in B cell activation and proliferation. Tissue Antigens 49: 7–15.

    Article  PubMed  CAS  Google Scholar 

  43. Ausiello CM, Urbani F. la Sala F, Funaro A and Malavasi F. 1995. CD38 ligation induces discrete cytokine mRNA expression in human cultured lymphocytes. Eur. J. Immunol. 25: 1477–1480.

    Article  PubMed  CAS  Google Scholar 

  44. Morra M. Zubiaur M, Terhorst C, Sancho J and Malavasi F. 1998. CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J. 12: 581–592.

    PubMed  CAS  Google Scholar 

  45. Zubiaur M. Guirado M. Terhorst C. Malavasi F and Sancho J. 1999. The CD3-gamma delta epsilon transducing module mediates CD38-induced protein-tyrosine kinase and mitogen-activated protein kinase activation in Jurkat T cells. J. Biol. Chem. 274: 20633–20642.

    Article  PubMed  CAS  Google Scholar 

  46. Konopleva M. Estrov Z. Zhao S. Andreeff M and Mehta K. 1998. Ligation of cell surface CD38 protein with agonistic monoclonal antibody induces a cell growth signal in myeloid leukemia cells. J. Immunol. 161: 4702–4708.

    PubMed  CAS  Google Scholar 

  47. Todisco E, Suzuki T, Srivannaboon K. Coustan-Smith E, Raimondi SC, et al. 1999. CD38 ligation inhibits normal and leukemic myelopoiesis. Blood 95: 535–542.

    Google Scholar 

  48. Ausiello CM, la Sala A, Ramoni C, Urbani F, Funaro A and Malavasi F. 1996. Secretion of I FN -γ. IL-6, granulocyte-macrophage colony-stimulating factor and IL-10 cytokines after activation of human purified T lymphocytes upon CD38 ligation. Cell. Immunol. 173: 192–197.

    Article  PubMed  CAS  Google Scholar 

  49. Zubiaur M, Izquierdo M. Terhorst C, Malavasi F and Sancho J. 1997. CD38 ligation results in activation of the Raf-1 /mitogen-activated protein kinase and the CD3-ζ/ζ- sassociated protein-70 signaling pathways in Jurkat T lymphocytes. J. Immunol. 159: 193–205.

    PubMed  CAS  Google Scholar 

  50. Zubiaur M, Fernandez O, Ferrero E, Salmeron J, Malissen B, et al. 2002. CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/Protein Kinase B and erk activation in the absence of the CD3-ζ immune receptor tyrosine-based activation motifs. J. Biol. Chem. 277: 13–22.

    Article  PubMed  CAS  Google Scholar 

  51. Nishina H, Inageda K, Takahashi K, Hoshino S, Ikeda K and Katada T. 1994. Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity. Biochem. Biophys. Res. Comm. 203: 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  52. Deaglio S, Dianzani U, Horenstein AL, Fernandez JE, van Kooten C, et al. 1996. Human CD38 ligand: A 120-KDA protein predominantly expressed on endothelial cells. J. Immunol. 156:727–734.

    PubMed  CAS  Google Scholar 

  53. Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, et al. 1998. Human CD38 (ADP-Ribosyl Cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 160:395–402.

    PubMed  CAS  Google Scholar 

  54. Garvy BA and Harmsen AG. 1996. The importance of neutrophils in resistance to pneumococcal pneumonia in adult and neonatal mice. Inflammation 20: 499–512.

    Article  PubMed  CAS  Google Scholar 

  55. Bergeron Y, Ouellet N, Deslauriers A, Simard M, Olivier M and Bergeron MG. 1998. Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect. Immun. 66: 912–922.

    PubMed  CAS  Google Scholar 

  56. Le Y, Oppenheim J and Wang JM. 2001. Pleiotropic roles of formyl peptide receptors. Cytokine and Growth Factor Rev. 12: 91 –105.

    Article  Google Scholar 

  57. Mukaida N. 2000. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72: 391–398.

    PubMed  CAS  Google Scholar 

  58. Zeilhofer HU and Schorr W. 2000. Role of interleukin-8 in neutrophil signaling. Curr. Opin. Hematol. 7: 178–182.

    Article  PubMed  CAS  Google Scholar 

  59. Mukaida N, Harada A and Matsushima K. 1998. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1) chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor. Rev. 9: 9–23.

    Article  PubMed  CAS  Google Scholar 

  60. Khair OA, Davies RJ and Devalia JL. 1996. Bacterial-induced release of inflammatory mediators by bronchial epithelial cells. Eur. Respir. J. 9: 1913–1922.

    Article  PubMed  CAS  Google Scholar 

  61. Schiffmann E, Corcoran BA and Wahl SM. 1975. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc. Natl. Acad. Sci. USA. 72: 1059–1062.

    Article  PubMed  CAS  Google Scholar 

  62. Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, et al. 1984. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259: 5430–5409.

    PubMed  CAS  Google Scholar 

  63. von Tscharner V, Prod'hom B, Baggiolini M and Reuter H. 1986. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324: 369–372.

    Article  Google Scholar 

  64. Demaurex N, Monod A, Lew DP and Krause K-H. 1994. Characterization of receptor-mediated and store-regulated Ca2+ influx human neutrophils. Biochem. J. 297: 595–601.

    PubMed  CAS  Google Scholar 

  65. Gao J-L, Lee EJ and Murphy PM. 1999. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J. Exp. Med. 189: 657–662.

    Article  PubMed  CAS  Google Scholar 

  66. Lee HC. 2001. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 41: 317–345.

    Article  PubMed  Google Scholar 

  67. Sethi JK, Empson RM, Bailey VC, Potter BVL and Galione A. 1997. 7-Deaza-8-bromo-cyclic ADP-ribose. the first membrane-permeant. hydrolysis-resistant cyclic ADP-ribose antagonist. J. Biol. Chem. 272: 16358–16563.

    Article  PubMed  Google Scholar 

  68. Abdallah MA, Biellmann JF, Nordstrom B and Branden CI. 1975. The conformation of adenosine diphosphoribose and 8-bromoadenosine diphosphoribose when bound to liver alcohol dehydrogenase. Euro. J. Biochem. 50: 475–481.

    Article  Google Scholar 

  69. Lentsch AB and Ward PA. 2000. Regulation of inflammatory vascular damage. J. Pathol. 190:343–348.

    Article  PubMed  CAS  Google Scholar 

  70. Pillinger MH and Abramson SB. 1995. The neutrophil in rheumatoid arthritis. Rheumatoid Arthritis 21: 691 –714.

    Google Scholar 

  71. Hanson PR. 1995. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91: 1872–1885.

    Article  Google Scholar 

  72. McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J and Willenborg DO. 1998. Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J. Immunol 161:6421–6426.

    PubMed  CAS  Google Scholar 

  73. Linden A. 2001. Role of interleukin-17 and the neutrophil in asthma. Int. Arch. Allergy Immunol. 126: 179–184.

    Article  PubMed  CAS  Google Scholar 

  74. Lee HC and Aarhus R. 1991. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium mobilizing metabolite. Cell Regul. 2: 203–209.

    PubMed  CAS  Google Scholar 

  75. Kim U-H, Kim J-S, Han MK, Park B-H and Kim H-R. 1993. Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch. Biochem. Biophys. 305: 147–152.

    Article  PubMed  CAS  Google Scholar 

  76. Kim H, Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261: 1330–1333.

    Article  PubMed  CAS  Google Scholar 

  77. Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, et al. 1997. Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene 186: 285–292.

    Article  PubMed  CAS  Google Scholar 

  78. Ferrero E and Malavasi F. 1997. Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+-converting enzymes. J. Immunol. 159: 3858–3865.

    PubMed  CAS  Google Scholar 

  79. Franco L, Guida L, Bruzzone S, Zocchi E, Usai C and De Flora A. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for the generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 12: 1507–1520.

    PubMed  CAS  Google Scholar 

  80. Galione A and White A. 1994. Ca2+ release induced by cyclic ADP-ribose. Trends in Cell Biol. 4:431–436.

    Article  CAS  Google Scholar 

  81. Prentki M, Wollheim CB and Lew PD. 1984. Ca2+ homeostasis in permeabilized human neutrophilsxharacterization of Ca2+ sequestering pools and the action of inositol 1, 4, 5-trisphosphate. J. Biol. Chem. 259: 13777–13782.

    PubMed  CAS  Google Scholar 

  82. Alemany R, Meyer zu Herigndorf D, van Koppen CJ and Jakobs KH. 1999. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J. Biol. Chem. 21 A: 3994–3999.

    Article  Google Scholar 

  83. Meszaros L, Bak J and Chu A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 354: 76–78.

    Article  Google Scholar 

  84. Sitsapesan R, McGarry SJ and Williams AJ. 1995. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16: 386–391.

    Article  PubMed  CAS  Google Scholar 

  85. Meissner G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Ann. Rev. Physiol. 56: 485–508.

    Article  CAS  Google Scholar 

  86. Lee HC. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268: 293–299.

    PubMed  CAS  Google Scholar 

  87. Peterson OH and Cancela JM. 1999. New Ca2+-releasing messengers: are they important in the nervous system? Trends Neurosci. 22: 488–494.

    Article  Google Scholar 

  88. Giannini G, Conti A, Mammarella S, Scrobogna M and Sorrentino V. 1995. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J. Cell Biol. 128: 893–904.

    Article  PubMed  CAS  Google Scholar 

  89. Galione A, Lee HC and Busa WB. 1991. Ca2+-induced Ca2+release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253: 1143–6.

    Article  PubMed  CAS  Google Scholar 

  90. Thomas JM, Masgrau R, Churchill GC and Galione A. 2001. Pharmacological characterization of the putative cADP-ribose receptor. Biochem. J. 359: 451–7.

    Article  PubMed  CAS  Google Scholar 

  91. Bennett DL, Bootman MD, Berridge MJ and Cheek TR. 1998. Ca2+ entry into PC 12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem. J. 329: 349–357.

    PubMed  CAS  Google Scholar 

  92. Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD and Muallem S. 2000. Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol. Cell 6: 421–431.

    Article  PubMed  CAS  Google Scholar 

  93. Kiselyov K, Shin DM, Shcheynikov N, Kurosaki T and Muallem S. 2001. Regulation of Ca2+ -release activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem. J. 360: 17–22.

    Article  PubMed  CAS  Google Scholar 

  94. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, et al. 1999. Regulation of calcium signaling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73

    Article  PubMed  CAS  Google Scholar 

  95. Montero M, Garcia-Sancho J and Alvarez J. 1994. Phosphorylation down-regulates the store-operated Ca2+ entry pathway of human neutrophils. J. Biol. Chem. 269: 3963–3967.

    PubMed  CAS  Google Scholar 

  96. Hauser CJ, Fekete Z, Adams JM, Garced M, Livingston DH and Deitch EA. 2001. PAF-mediated Ca2+ influx in human neutrophils occurs via store-operated mechanisms. J. Leukoc. Biol. 69: 63–68.

    PubMed  CAS  Google Scholar 

  97. Nube O, Serrander L, Foyouzi-Youssefi R, Monod A, Lew DP and Krause K-H. 1997. Store-operated Ca2+ influx and stimulation of exocytosis in HL-60 granulocytes. J. Biol. Chem. 272: 28360–28367.

    Article  Google Scholar 

  98. Khalfi F, Gressier B, Dine T, Brunet C, Luyckx M, et al. 1998. Verapamil inhibits elastase release and superoxide anion production in human neutrophils. Biol. Pharm. Bull. 21. 109–112.

    Article  PubMed  CAS  Google Scholar 

  99. Krause K-H, Pittet D, Volpe P, Pozzan T, Meldolesi J and Lew DP. 1989. Calciosome, a sarcoplasmic reticulum-like organelle involved in intracellular Ca2+-handling by non-muscle cells: Studies in human neutrophils and HL-60 cells. Cell Calcium 10: 351–361.

    Article  PubMed  CAS  Google Scholar 

  100. Pettit EJ and Fay FS. 1998. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol. Rev. 78: 949–967.

    PubMed  CAS  Google Scholar 

  101. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. 2001. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599.

    Article  CAS  Google Scholar 

  102. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. 2001. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  103. Berg I, Potter BVL, Mayr GW and Guse AH. 2000. Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca2+ signaling. J. Cell Biol. 150:581–588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lund, F.E., Randall, T.D., Partida-Sánchez, S. (2002). Regulation of Immune Responses by CD38 and cADPR. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics