Skip to main content

Importance of Glomus Cell Plasma Membrane and Mitochondrial Membrane Potentials During Acute Hypoxia Signaling in the Rat Carotid Body

  • Chapter
Oxygen Transport To Tissue XXIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 510))

  • 323 Accesses

Abstract

The mammalian carotid body (CB) is an oxygen addicted chemoreceptor organ, which consists of type I glomus, cells; the seat of oxygen sensing. There are two consensus hypotheses regarding the CB hypoxia signaling pathway; (a) non-respiratory/ plasma membrane and (b) respiratory/ metabolic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Lahiri, C. Rozanov, A. Roy, B. Storey, and D.G. Buerk, Regulation of oxygen sensing in peripheral arterial chemoreceptor, Int. J. Biochem.Cell Biol. 33, 755–774 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. C.N. Wyatt, C. Wright, D. Bee, and C. Peers, 02-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction., Proc Natl Acad Sci 92, 295–299 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. L. Pang, and C. Eyzaguirre, Different effects of hypoxia on the membrane potential and input resistance of isolated and clustered carotid body glomus cells., Brain Res. 575, 167–173 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. M.R. Duchen, and T.J. Biscoe, Relative mitochondrial membrane potential and [Ca2+]I in type I cells isolated from the rabbit carotid body, J Physiol. 450, 33–61 (1992).

    PubMed  CAS  Google Scholar 

  5. S.S. Krylov, and S.V. Anichcov, The effects of metabolic inhibitors on carotid chemoreceptors, in Arterial Chemoreceptors,edited by R.W. Torrance (Blackwell, 1968), pp 103–109.

    Google Scholar 

  6. E. Mulligan, and S. Lahiri, Dependence of carotid chemoreceptor stimulation by metabolic agents on Pao2 and Paco2, J. Appl. Physiol. 50, 884–891 (1981).

    PubMed  CAS  Google Scholar 

  7. A. Mokashi, D. Ray, F. Botre, M. Katayama, S. Osanai, and S.Lahir, Effects of hypoxia on intracellular pH of glomus cells cultured from rat and cat carotid bodies, JAppl Physiol. 78, 1875–1881 (1995).

    CAS  Google Scholar 

  8. H.J. Apell, and B. Bersch, Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochem BiophysActa, 903, 480–494 (1987).

    CAS  Google Scholar 

  9. T. Brauner, D.F. Hulser, and R.J. Strasser, Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes, Biochem BiophysActa. 771, 208–216 (1984).

    CAS  Google Scholar 

  10. A.B. A1-mehdi, H. Shuman, and A.B. Fisher, Oxidant generation with K’- induced depolarization in the isolated perfused lung, Free Radical Biol & Med. 23, 47–56 (1997).

    Article  CAS  Google Scholar 

  11. C.F. Mohr, and C. Fewtrell, IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol J Immunol. 138 1564 - 570 (1987).

    PubMed  CAS  Google Scholar 

  12. M. Reers, S.T. Smiley, C. Mottola-Hartshorn, A. Chen, M. Lin, and L.B. Chen, Mitochondrial membrane potential monitored by JC-1 dye, Methods in Enzymol., 260, 406–417 (1995).

    Article  CAS  Google Scholar 

  13. J. Urena, R. Fernandez-Chacon, A.R. Benot, G. Alvarez de Toledo, and J. Lopez-Barreo, Hypoxia induces voltage dependent Ca2* entry and quantal dopamine secretion in carotid body glomus cells, Proc. Natl. Acad. Sci. 91, 10208–10211 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. D.G. Buerk, S. Osanai, A. Mokashi, and S. Lahiri, Dopamine, sensory discharge, and stimulus interaction with CO2 and 02in cat carotid body, J. Appl. Physiol. 85, 1719–1726 (1998).

    PubMed  CAS  Google Scholar 

  15. K.J. Buckler, A novel oxygen-sensitive potassium current in rat carotid body type I cells, J. Physiol. 498, 649–662 (1997).

    PubMed  CAS  Google Scholar 

  16. D.F. Donnelly, IC currents of glomus cells and chemosensory functions of carotid body, Respir. Physiol. 115, 151–160 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. N. Fujimura, E. Tanaka, S. Yamamoto, M. Shigemori, and H. Higashi, Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CAl neurons in vitro, J. Neurophysiol. 77, 378–385 (1997).

    PubMed  CAS  Google Scholar 

  18. G. Erdemi, Y.Z. Xu, and K. Knnjevic, Potassium conductance causing hyperpolarization of CAl hippocampal neurons during hypoxia, J. Neurophysiol. 80, 2378–2390 (1998).

    Google Scholar 

  19. C. Peers, and J. O’Donnell, Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents, Brain Res. 572, 259–266 (1990).

    Article  Google Scholar 

  20. C. Peers, Hypoxic suppression of K’ currents in type I carotid body cells: selective effect of Cat+-activated K* current, Neurosci. Lett. 119, 253–256 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. D.M. McDonald, and R.A. Mitchell, The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis, J. Neurocytol. 4, 177–230 (1975).

    Article  Google Scholar 

  22. M.T. Perez-Garcia, A. Obeso, J.R. Lopez-Lopez, B. Herreros, and C. Gonzalez, Characterization of cultured chemoreceptor cells dissociated from adult rabbit carotid body, Am. J. Physiol. 263, C1152–C1159 (1992).

    PubMed  CAS  Google Scholar 

  23. A. Roy, C. Rozanov, D.G. Buerk, A. Mokashi, and S. Lahiri, Suppression of glomus cell K. conductance by 4-aminopyridine is not related to [Ca21i, dopamine release and chemosensory discharge from carotid body, Brain Res. 785, 228–235 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. K.J. Buckler, and R.D. Vaughan-Jones, Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells, J. Physiol. 513, 819–833 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. A. Rocher, A. Obeso, C. Gonzalez, and B. Herreros, ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells, J. Physiol. 433, 533–548 (1991).

    PubMed  CAS  Google Scholar 

  26. S. Lahiri, D.G. Buerk, D. Chugh, S. Osanai, A. Mokashi, Reciprocal photolabile 02 consumption and chemoreceptor excitation by carbon monoxide in the cat carotid body: evidence for cytochrome a3 as the primary 02 sensor, Brain Res. 684, 194–200 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. A. Mokashi, A. Roy, C. Rozanov, S. Osanai, B.T. Storey, S. Lahiri, High Pco does not alter pHI, but raises [Ca2+]I in cultured rat carotid body glomus cells in the absence and presence of CdC12. Brain Res. 803, 194–197 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. D.G. Buerk, D.K. Chugh, S. Osanai, A. Mokashi, S. Lahiri, Dopamine increases in cat carotid body during excitation by carbon monoxide: Implications for a chromophore theory of chemoreception., J Autonom New Sys. 67, 130–136 (1997).

    Article  CAS  Google Scholar 

  29. AV. Nowicky, and M.R. Duchen, Changes in [Ca2+]1 and membrane currents during impaired mitochondria) metabolism in dissociated rat hippocampal neurons, J Physiol. 507, 131–145 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. R. Rizzuto, P. Pinton, W. Carrington, F.S. Fay, K.E. Fogarty, L.M. Lifshitz, R.A. Tuft, and T. Pozzan, Close contacts with the endoplasmic reticulum as determinants of mitochondria) Ca2+ responses, Science, 280, 1763–1766 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roy, A., Al-mehdi, A.B., Mokashi, A., Lahiri, S. (2003). Importance of Glomus Cell Plasma Membrane and Mitochondrial Membrane Potentials During Acute Hypoxia Signaling in the Rat Carotid Body. In: Wilson, D.F., Evans, S.M., Biaglow, J., Pastuszko, A. (eds) Oxygen Transport To Tissue XXIII. Advances in Experimental Medicine and Biology, vol 510. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0205-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0205-0_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4964-8

  • Online ISBN: 978-1-4615-0205-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics