Skip to main content

Molecular Imaging by PET

  • Chapter
Oxygen Transport To Tissue XXIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 510))

  • 319 Accesses

Abstract

Positron emission tomography (PET) allows quantitative measurements of regional physiological and biochemical processes to be made in vivo in humans. PET determines the three-dimensional distribution of activity in the organ being studied after the subject is administered a tracer labeled with a positron emitting radionuclide. Quantitation of the parameter under study is accomplished by the use of a mathematical model that describes the biochemical or physiological process being examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrish P.K., Sawle G.V., and Brooks D.J. 1995, Clinical and [18F]dopa PET findings in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 59:597–600.

    Article  PubMed  CAS  Google Scholar 

  2. . Rakshi J.S., Uema T., Ito K., et al. 1996, Statistical parametric mapping of three dimensional 18F-dopa PET in early and advanced Parkinson’s disease [abstract]. Mov Disord 11:147.

    Google Scholar 

  3. Frost J.J., Rosier A.J., Reich S.G., et al. 1993, Positron emission tomographic imaging of dopamine transporter with “C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423431.

    Google Scholar 

  4. Joyce J.N. and Murray A. 1994, Distribution of DI- and D2-like dopamine receptors in human brain, in: Dopamine-receptors and transporters: pharmacology, structure, and function, H.B. Niznik, ed., Marcel Dekker, New York pp. 345–383.

    Google Scholar 

  5. Antonini A., Schwarz J., Oertel W.H., et al. 1994, “C-raclopride positron emission tomography in previous untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2 receptors. Neurology 44:1325–1329.

    Article  PubMed  CAS  Google Scholar 

  6. Brooks D.J., Ibanez V., Sawle G.V., et al. 1990, Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555.

    Article  PubMed  CAS  Google Scholar 

  7. Bum D.J., Sawle G.V., and Brooks D.J., 1994, Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57;278–284.

    Article  Google Scholar 

  8. Antonini A., Leenders KL., Vontobel P., et al. 1997, Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120:2187–2195.

    Article  PubMed  Google Scholar 

  9. . Brooks D.J., Ibanez V., Sawle G.V., et al. 1992, Striatal D2 receptors in patients with Parkinson’s disease, Striatonigral degeneration, and progressive supranuclear palsy measured with “C-raclopride and positron emission tomography. Ann Neurol 31:184–192.

    Article  PubMed  CAS  Google Scholar 

  10. Gambhir S.S., Barrio J., Wu L., et al. 1998 Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase gene expression n mice with ganciclovir. J Nucl Med 39:2003–2011.

    PubMed  CAS  Google Scholar 

  11. Gambhir S.S., Barrio J.R., Iyer M., et al. 1999, In vivo validation of PET reporter gene/reporter probe assay for herpes simplex virus type I thymidine kinase with 8-[F-18]-fluoropenciclovir [abstract]. J Nucl Med 40:25P–26P.

    Google Scholar 

  12. Hustinx R., Eck S.L., and Alavi A. 1999, Potential applications of PET imaging in developing novel cancer therapies. J Nucl Med 40:995–1002.

    PubMed  CAS  Google Scholar 

  13. Hustinx R., Shiue C.,Y., Alavi A., et al. 2001, Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography and [18F]FHPG. Eur J Nucl Med 28:5–12.

    Article  PubMed  CAS  Google Scholar 

  14. MacLaren D.C., Gambhir S.S., Satyamurthy N., et al. 1999, Repetitive, non-invasive imaging of the dopamine D2receptor as a reporter gene in living animals. Gene Therapy 6:785–791.

    Article  PubMed  CAS  Google Scholar 

  15. MacLaren D.C., Toyokuni T., Cherry S.R., et al. 2000, PET imaging of transgene expression. Biol Psychiatry 48:337–348.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reivich, M. (2003). Molecular Imaging by PET. In: Wilson, D.F., Evans, S.M., Biaglow, J., Pastuszko, A. (eds) Oxygen Transport To Tissue XXIII. Advances in Experimental Medicine and Biology, vol 510. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0205-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0205-0_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4964-8

  • Online ISBN: 978-1-4615-0205-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics