Skip to main content

The Bereitschaftspotential: What Does It Measure and where Does It Come from?

  • Chapter
The Bereitschaftspotential

Abstract

The Bereitschaftspotential (BP) is a negative cortical potential which develops beginning 1. 5 to 1 s prior to the onset of a self-paced movement (see Figure 1). The BP was first described by Kornhuber & Deecke in 1964, which makes it about 38 years old. Before the days that citation indices and impact factors came into vogue, one criterion for the significance of a research finding or paper was whether it led to other research studies. By this criterion, the BP has been incredibly influential. The BP has become a well-established tool in the motor physiology laboratory (Marsden et al, 1986), and from recent publications in scientific journals it is evident that the BP is also very much alive and well as a research tool. Its amplitude, slope, and/or latency have been shown to be impaired in neurological disorders such as Parkinson’s disease (Dick et al, 1989; Jahanshahi et al, 1995; Cunnington et al, 1995; Praamstra et al, 1996a), Huntington’s disease (Johnson et al, 2001), dystonia (Van der Kemp et al, 1995; Deuschl et al, 1995), cerebellar disease (Shibasaki et al, 1978; Verleger et al, 1999; Wessel et al, 1994), and psychiatric disorders such as schizophrenia (eg Singh et al, 1992; Fuller et al, 1999; Northoff et al, 2000) and depression (Khanna et al, 1989; Haag et al, 1994) and in patients with focal lesions of the thalamus (Shibasaki, 1975; Green et al, 1999; Feve et al, 1996), basal ganglia (Feve et al, 1994; Kitamura et al, 1996) cerebellum (Shibasaki et al, 1978; Ikeda et al, 1994; Gerloff et al, 1996), prefrontal (Shibasaki, 1975; Singh & Knight, 1990; Honda et al, 1997) or parietal (Knight et al, 1989; Singh & Knight, 1993) cortices. In the last decade, there has been a surge of interest in the BP with the demonstration that besides simple movement Parameters such as force (Kutas & Donchin, 1980) and rate (Mackinnon et al, 1996) higher order motor processes such as movement complexity (Benecke et al, 1985; Simonetta et al, 1991) and mode of movement selection (Jahanshahi et al, 1995; Touge et al, 1995; Praamstra et al, 1996a; Dirnberger et al, 1998) affect its amplitude or slope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, T., Schreiber, A., Feige, B., Wagner, M., LĂĽcking, C. H. and Kristeva-Feige, R. (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI.Neuroimage 10, 682–694.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, H., Korundka, Ch. and Leodolter, M. (1993) possible glial contribution in the electrogenesis of SP. In McCallum,W. C. and Curry, S. H. (Eds) Slow potential changes in the human brain., Plenum Press, New York, 23–34.

    Google Scholar 

  • Benecke, R., Dick J. P. R., Rothwell, J. C., Day, B. C. and Marsden, C. D. (1985) Increase of the Bereitschaftspotential in simultaneous and sequential movements.Neuroscience Letters 62, 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. G. M. and Rockstroh, B. (1990) Slow potentials of the cerebral cortex and behavior.Physiological Reviews,70, 1–41.

    PubMed  CAS  Google Scholar 

  • Botzel, K. and Schulze, S. (1996) Letter toBrain.119: 1045–1048.

    Google Scholar 

  • Boetzel, K., Plendl, H., Paulus, W. and Scherg, M. (1993) Bereitschaftspotential: is there a contribution of the supplementary motor area? Electroencephalogr.Clin. Neurophysiol.,89, 187–96.

    Google Scholar 

  • Caspers, H. and Speckmann, E. J. (1974) Cortical DC shifts associated with changes of gas tension in blood and tissue. InHandbook of Electroencephalography and Clinical Neurophysiology. Edited by Reymond, A. Amsterdam:Elsevier, Vol 10A, p41–65.

    Google Scholar 

  • Cheyne, D. and Weinberg, H. (1989) Neuromagnetic fields accompanying unilateral finger movements: pre-movement and movement-evoked fields.Exp Brain Res 78, 604–612.

    Article  PubMed  CAS  Google Scholar 

  • Chiarenza, G. A., Villa, M. and Vasile, G. (1995) Developmental aspects of Bereitschaftspotential in children during goal-directe behaviour.International Journal of Psychophysiology,19, 149–176.

    Article  PubMed  CAS  Google Scholar 

  • Cunnington, R., Iansek, R., Bradshaw, J. L. and Phillips, J. G. (1995) Movement-related potentials in Parkinson’s disease: Presence and predictability of temporal and spatial cues.Brain 118, 935–950.

    Article  PubMed  Google Scholar 

  • Cunnington, R., Iansek, R. and Bradshaw, J. L. (1999) Movement-related potentials in Parkinson’s disease: External cues and attentional strategies.Mov. Disord.14, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Cunnington, R., Windischberger, C., Deecke, L. and Moser, E. (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI.Neurolmage 15, 373–385.

    Article  CAS  Google Scholar 

  • Coles, M. G. H. and Gratton, G. (1986) Cognitive psychophysiology and the study of states and processes. In: Hockey, G.R. J., Gaillard, A. W. K. and Coles, M. G. H. (Eds. )Energetics and human information processing, pp. 409–424.Dordrecht, The Netherlands: Martinus Nijhof.

    Chapter  Google Scholar 

  • Cui, R. Q., Huter, D., Lang, W., Lindinger, G., Beisteiner, R. and Deecke, L. (1996) Multichannel DC current source density mapping of the Bereitschaftspotential in the supplementary and primary motor area preceding differently loaded movements.Brain Topography 9(2): 83–94.

    Article  Google Scholar 

  • Cui, R. Q., Huter, D., Lang, W. and Deecke, L. (1999) Neuroimage of voluntary movement: Topography of the Bereitschaftspotential, a 64-channel DC current source density study.Neurolmage 9, 124–134.

    Article  CAS  Google Scholar 

  • Deecke, L. (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Porter, R. (Ed)Motor Areas of the Cerebral Cortex. Ciba Found. Symp.,132, Wiley, Chichester, 231–50.

    Google Scholar 

  • Deecke, L., Kornhuber, H. H., Lang, W., Lang, M. and Schreiber, H. (1985) Timing function of the frontal cortex in sequential motor and learning tasks.Human Neurobiol 4, 143–154

    CAS  Google Scholar 

  • Deecke, L., Grozinger, B. and Kornhuber, H. H. (1976) Voluntary finger movement in man: cerebral potentials and theory.Biol Cybern.23, 99–119.

    Article  PubMed  CAS  Google Scholar 

  • Deecke, L., Scheid, P. and Kornhuber, H. H. (1969) Distribution of readiness potential, pre-motion positivity and motorpotential of the human cerebral cortex preceding voluntary finger movements.Exp Brain Res 7, 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Defebvre, L., Bourriez, J. L., Dujardin, K., Derambure, P., Destee, A. and Guieu, J. D. (1994) Spatiotemporal study of Bereitschaftspotential and event-related desynchronization during voluntary movement in Parkinson’s disease.Brain Topography 6, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Deuschl, G., Toro, C., Matsumoto, J. and Hallett, M. (1995) Movement-related cortical potentials in writer’s crampAnnals of Neurology 38; 862–8.

    Article  PubMed  CAS  Google Scholar 

  • Dick, J. P. R., Cantello, R., Buruma, O., Gioux, M., Benecke, R., Day B. L, Rothwell, J. C., Thompson, P. D. and Marsden,C. D. (1987) The Bereitschaftspotential, L-Dopa and Parkinson’s disease.EEG Clin Neurophysiol 66, 263–274

    Article  CAS  Google Scholar 

  • Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, O., Gioux, M., Benecke, R., Berardelli, A., Thompson, P. D. and Marsden, C. D. (1989) The Bereitschafts potential is abnormal in Parkinson’s disease.Brain 112, 233–244.

    Article  PubMed  Google Scholar 

  • Dirnberger, G., Fickel, U., Lindinger, G., Lang, W. and Jahanshahi, M. (1998) The mode of movement selection:Movement-related cortical potentials prior to freely selected and repetitive movements.Exp Brain Res,120, 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Dirnberger, G., Reumann, M., End1, W., Lindingere, G., Lang, W. and Rothwell, J. C. (2000) Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials.Exp Brain Res 135, 231–240.

    Article  PubMed  CAS  Google Scholar 

  • Eimer, M., Goschke, T., Schlaghecken, F. and StĂĽrmer, B. (1996) Explicit and implicit learning of event sequences: Evidence from event-related brain potentials.Journal of Experimental Psychology: Learning, Memory, and Cognition 22, 1–18.

    Article  Google Scholar 

  • Elbert, T. (1993) Slow cortical potentials reflect the regulation of cortical excitability. In WC McCallum and SH Curry(Eds) Slow potential changes in the human brain., Plenum Press, New York, p235–251.

    Google Scholar 

  • Elbert, T. and Rockstroh, B. (1987) Threshold regulation- a key to understanding of the combined dynamics of EEG and event-related potentials.J of Psychophysiology 4, 317–333.

    Google Scholar 

  • Erdler, M., Beisteiner, R., Mayer, D., Kaindl, T., Edward, V., Windischberger, C., Lindinger, G. and Deecke, L. (2000)Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system.Neuroimage,11, 697–707.

    Article  PubMed  CAS  Google Scholar 

  • Fève, A. P., Bathien, N. and Rondot, P. (1992) Chronic administration of L-dopa affects the movement-related cortical potential in patients with Parkinson’s disease.Clin. Neuropharm.15, 100–108.

    Article  Google Scholar 

  • Fève, A. P., Bathien, N. and Rondot, P. (1994) Abnormal movment-related potentials in patients with lesions of basal ganglia and anterior thalamus.J. Neurol. Neurosurg. Psychiatry 57, 100–104.

    Article  PubMed  Google Scholar 

  • Fuller, R., Nathaniel-James, D. and Jahanshahi, M. (1999). Movement-related potentials prior to self-initiated movements are impaired in patients with schizophrenia and negative signs.Exp. Brain Res.126, 545 - 555

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, A. W. K. (1977) The late CNV wave: preparation versus expectancy.Psychophysiology 14563–568.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff, C., AltenmĂĽller, E. and Dichgans, J. (1996) Disintegration and reorganization of cortical motor processing in 2 patients with cerebellar stroke. Electroencephalogr.Clin. Neurophysiol.,98, 59–68.

    Article  CAS  Google Scholar 

  • Gerloff, C., Uenishi, N. and Hallett, M. (1998a) Cortical activation during fast repetitive finger movements in humans:Dipole sources of steady-state movement-related cortical potentials.J. Clin. Neurophysiol.15, 502–13.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff, C., Uenishi, N., Nagamine, T., Kunieda, T., Hallett, M. and Shibasaki, H. (1998b) Cortical activation during fast repetitive finger movements in humans: Steady-state movement-related magnetic fields and their cortical generators. Electroenceph.Clin. Neurophysiol,109, 444–53.

    CAS  Google Scholar 

  • Green, J. B., Bialy, Y., Sora, E. and Ricamato, A. (1999) High-resolution EEG in poststroke hemiparesis can identify ipsilateral generators during motor tasks.Stroke 30, 2659–65.

    Article  PubMed  CAS  Google Scholar 

  • Haag, C., Kathmann, N., Hock, C, GĂĽnther, W., Vorderholzer, U. and Laakmann, G. (1994)Lateralization of the Bereitschaftspotential to the Left Hemisphere in Patients with Major Depression.Biol Psychiatry 36, 453–457

    Article  PubMed  CAS  Google Scholar 

  • Haggard, P. and Eimer, M. (1999). On the relation between brain potentials and the awareness of voluntary movements.Exp. Brain Res.126, 128–133.

    Article  PubMed  CAS  Google Scholar 

  • Hari, R. (1980)Sensory evoked sustained potentials in man. Department of Physiology, University of Helsinki, Academic Dissertation.

    Google Scholar 

  • Honda, M., Nagamine, T., Fukuyama, H., Yonekura, Y., Kimura, J. and Shibasaki, H. (1997) Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery.J. Neurol. Sci.146, 117–26.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, A., Shibasaki, H., Nagamine, T., Terada, K., Kaji, R., Fukuyama, H. and Kimura, J. (1994) Dissociation between contingent negative variation and Bereitschaftspotential in a patient with cerebellar efferent lesion.Electroencephalogr.Clin. Neurophysio.,90, 359–64.

    Article  CAS  Google Scholar 

  • Jahanshahi, M., Jenkins, I. H., Brown, R. G., Marsden, C. D., Passingham, R. E. and Brooks, D. J. (1995) Self initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects.Brain 118, 913–933.

    Article  PubMed  Google Scholar 

  • Jahanshahi, M., Dirnberger, G., Filipovic, S. R., Jones, C, Fuller, R., Frith, C. D., and Barnes, G. (2000) Willed vs externally-triggered saccades.Soc Neurosc Abstracts.

    Google Scholar 

  • Jahanshahi, M., Dirnberger, G., Liasis, A., Towell, A. and Boyd, S. (2001) Does the prefrontal cortex contribute to movement-related potentials? Recordings from subdural electrodes.Neurocase,7, 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. A., Cunnington, R., Iansek, R., Bradshaw, J. L., Georgiou, N. and Chiu, E. (2001) Movement related potentials in Huntington’s disease: movement preparation and execution.Exp. Brain Res.138, 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Keller, I. and Heckhausen, H. (1990). Readiness potentials preceding spontaneous acts:Voluntary vs. involuntary control.Electroencephalography and Clinical Neurophysiology 76, 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, S., Mukundan, C. R., and Channabasavanna, S. M. (1989) Bereitschaftspotential in Melancholic Depression.Biol Psychiatry 26, 526–529

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, J., Shibasaki, H. and Takeuchi, T. (1996) Cortical potentials preceding voluntary elbow movement in recovered hemiparesis.Electroencephalogr. Clin. Neurophysiol,98, 149–56.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, J., Shibasaki, H., Takagi, A., Nabeshima, H. and Yamaguchi, A. (1993) Enhanced negative slope of cortical potentials before seqeuntial as compared with simultaneous extensions of two fingersEEG Clin Neurophysiol,86, 176–182.

    Article  CAS  Google Scholar 

  • Knight, R. T., Singh, J. and Woods, D. L. (1989) Pre-movement parietal lobe input to human sensorimotor cortex.Brain Res.498, 190–4.

    Article  PubMed  CAS  Google Scholar 

  • Komhuber, H. H. and Deecke, L. (1964) Hirnpotentialänderungen beim Menschen vor und nach WillkĂĽrbewegungen,dargestellt mit Magnetband-Speicherung und RĂĽckwärtsanalyse.PflĂĽgers Arch.281, 52.

    Google Scholar 

  • Kornhuber, H. H. and Deecke, L. (1965) Hirnpotentialänderungen bei WillkĂĽrbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale.PflĂĽgers Arch.284, 1–17.

    Article  CAS  Google Scholar 

  • Kristeva, R., Cheyne, D. and Deecke, L. (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources.EEG Clin Neurophysiol 81, 284–298.

    CAS  Google Scholar 

  • Kutas, M. and Donchin, E. (1980) Preparation to respond as manifested by movement-related brain potentials.Brain Research 202, 95–115.

    PubMed  CAS  Google Scholar 

  • Laming, P. R. (1989) Do glia contribute to behavior? A neuromodulatory review.Comp Biochem. Physiol.94a, 555. 455.

    Google Scholar 

  • Lang, L., Lang, M., Poddreka, M., Steiner, M., Uhi, F., Suess, E., MĂĽller, Ch. and Deecke, L. (1988) DC-potentials shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning.Exp Brain Res 71, 353–364.

    PubMed  CAS  Google Scholar 

  • Libet, B. (1992) Voluntary acts and readiness potentials,Electroencephalography and Clinical Neurophysiology 82, 85–86.

    Article  PubMed  CAS  Google Scholar 

  • Lemieux, L. Salek-Haddadi, A., Josephs, O., Allen, P., et al (2001) Event-related fMRI simultaneous and continuous EEG: Description of the method and initial case report.Neurolmage 14, 780–787.

    Article  CAS  Google Scholar 

  • Lopes da Silva, F. (1996) Biophysical issues at the frontiers of the interpretation of EEG/MEG signals. In RM Dashieff and DJ Vincent (Eds)Frontier Science in EEG: Continuous Waveform Analysis. EEG Clinical Neurophysiology, (EEG Suppl 45)Elsevier, Amsterdam, ppl–7.

    Google Scholar 

  • Mackinnon, C. D., Kapur, S., Hussey, D., Verrier, M. C, Houle, S. and Tatton, W. G. (1996) Contributions of the mesial frontal-cortex to the premovement potentials associated with intermittent hand movements in humans.Human Brain Mapping,4, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • McCallum, W. C. (1993) Human slow potential research. In McCallum, W. C. and Curry, S. H. (Eds)Slow potential changes in the human brain. Plenum Press, New York, p1–12.

    Google Scholar 

  • Nagamine, T., Toro, C., Balish, M., Deuschl, G., Wang, B., Sato, S., Shibasaki, H. and Hallett, M. (1994) Cortical magnetic and electric fields associated with voluntary finger movements.Brain Topogr.6, 175–83.

    Article  PubMed  CAS  Google Scholar 

  • Neafsey, E. J., Hull, C. D. and Buchwald, N. A. (1978) Preparation for movement in the cat. II Unit activity in the basal ganglia and thalamus.EEG Clinical Neurophysiology 44, 714–723.

    Article  CAS  Google Scholar 

  • Neshige, R., LĂĽders, H. and Shibasaki, H. (1988) Recording of movement-related potentials from scalp and cortex in man.Brain 111, 719–736.

    PubMed  Google Scholar 

  • Northoff, G., Pfennig, A., Krug, M., Danos, P., Leschinger, A., Schwarz, A. and Bogerts, B. (2000) Delayed onset of late movement-related cortical potentials and abnormal response to lorazepam in catatonia.Schizophrenia Research 44, 193–211

    Article  PubMed  CAS  Google Scholar 

  • Okano, K. and Tanji, J. (1987) Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement.Exp. Brain Res.66, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, J. R., Johannsen, P., Bak, C. K., Kofoed, B., Saermark, K. and Gjedde, A. (1998) Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET.Neuroimage 8, 214–20.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller, G., Aranibar, A. (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG.Electroenceph. Clin. Neurophysiol.42, 817–826.

    Article  PubMed  CAS  Google Scholar 

  • Praamstra, P., Cools, A. R., Stegeman, D. F. and Horstink, M. W. I. M. (1996a) Movement-related potential measures of different modes of movement selection in Parkinson’s disease.J. Neurol. Sci.140, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Praamstra, P., Stegeman, D. F., Horstink, M. W. and Cools, A. R. (1996b) Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalogr.Clin.Neurophysiol.,98, 468–77.

    Article  CAS  Google Scholar 

  • Rektor, I., FĂ©ve, A., Buser, N., Bathien, N. and Lamarche, M. (1994) Intracranial recoroding of movement-related readiness potentials: an exploration in epileptic patients.Electroenceph clin Neurophysiol 90, 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Rockstroh, B., Elbert, T., Birbaumer, N. and Lutzenberger, W. (1982)Slow brain potentials and behavior. Urban & Schwarzenberg, Munich.

    Google Scholar 

  • Roitbak, A. L., Fanardjhayan, V. V., Melkonyan, D. S. and Melkonyan, A. A. (1987) Contribution of glia and neurons to the surface negative potentials of the cerebral cortex during its electrical stimulation.Neuroscience 20, 1057–67.

    Article  PubMed  CAS  Google Scholar 

  • RĂĽsseler, J. and Rösler, F. (2000) Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations.Acta Psychologica 104, 45–67.

    Article  PubMed  Google Scholar 

  • Sasaki, K., Gemba, H., Hashimoto, S. and Mizuno, N. (1979) Influences of cerebellar hemispherectomy on slow potentials in the motor cortex preceding self-paced hand movements in the monkey.Neurosci. Lett.,15, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W. and Romo, R. (1992) Role of the primate basal ganglia and frontal cortex in the internal generation of movements. I Preparatory activity in the anterior striatum.Exp Brain Res.91, 363–384.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, H. (1975) Movement-associated cortical potentials in unilateral cerebral lesions.J. Neurol.,209, 189–98.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, H., Barrett, G., Halliday, E. and Halliday, A. M. (1980) Components of the movement-related cortical potential and their scalp topography.Electroencephalogr. Clin. Neurophysiol.,49, 213–26.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, H., Shima, F. and Kuroiwa, Y. (1978) Clinical studies of the movement-related cortical potential (MP) and the relationship between the dentatorubrothalamic pathway and readiness potential (RP).J. Neurol.219, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Shima, K., Aya, K., Mushiake, H., Inase, M., Aizawa, H. and Tanji, J. (1991) Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements.J of Neurophysiology 65,188–202.

    CAS  Google Scholar 

  • Simonetta, M., Clanet, M. and Rascol, O. (1991) Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement.Electroenceph. Clin. Neurophysiol.81, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Singh, J. and Knight, R. T. (1990) Frontal lobe contribution to voluntary movements in humans.Brain Res.531, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Singh, J. and Knight, R. T. (1993) Effects of posterior association cortex lesions on brain potentials preceding self-initiated movements.J. Neurosci.13, 1820–9.

    PubMed  CAS  Google Scholar 

  • Skinner, J. E. and Yingling, C. D. (1976) Regulation of slow potnetial shifts in nucleus reticularis thalami by the mesencepahic reticular formation and the frontal granular cortex.EEG & Clinical Neurophysiology 40, 288–296.

    Article  CAS  Google Scholar 

  • Smid, H. G. O. M., Mulder, G. and Mulder, L. J. M. (1987) The continuous flow model revisited: Preceptual and central motor aspects. In: Johnson, R., Jr., Rohrbaugh, J. W. and Parasuraman, R. (Eds. )Current trends in event-related potential research (EEG Suppl. 40), pp. 270–278. Amsterdam: Elsevier.

    Google Scholar 

  • Tarkka, I. M. and Hallett, M. (1991) The cortical potential related to sensory feedback from voluntary movements shows somatotopic organization of the supplementary motor area.Brain Topogr.3, 359–63.

    Article  PubMed  CAS  Google Scholar 

  • Tarkka, I. M., Massaquoi, S. and Hallett, M. (1993) Movement-related cortical potentials in patients with cerebellar degeneration.Acta Neurol. Scand.88, 129–35.

    Article  PubMed  CAS  Google Scholar 

  • Tecce J. J., Savignano-Bowman, J. and Meinbresse, D. (1978) Contingent negative variation and the distraction-arousal hypothesis.EEG & Clinical Neurophysiology 41, 277–286.

    Article  Google Scholar 

  • Toro, C., Matsumoto, J., Deuschl, G., Roth, B. J. and Hallett, M. (1993) Source analysis of scalp-recorded movement-related electrical potentials.Electroencephalogr. Clin. Neurophysiol,86, 167–75.

    Article  PubMed  CAS  Google Scholar 

  • Touge, T., Werhahn, K. J., Rothwell, J. C. and Marsden CD. (1995) Movement-related cortical potentials preceding repetitive and random-choice hand movements in Parkinson’s disease.Ann. Neurol.37, 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto, T., Gemba, H. and Sasaki, K. (1993) Effect of cooling the dentate nucleus of the cerebellum on hand movements of the monkey.Brain Res.629, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, F., Goldenberg, G., Lang, W., Lindinger, G., Steiner, M. and Deecke, L. (1990) Cerebral correlates of imanining colours, faces and a map - II. Negative cortical DC-potentials.Neuropsychologia 28: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Van der Kamp, W., Rothwell, J. C., Thompson, P. D., Day, B. L. and Marsden, C. D. (1995) The movement-related cortical potential is abnormal in patients with idiopathic torsion dystonia.Mov. Disord. 10, 630–633.

    Article  PubMed  Google Scholar 

  • Verleger, R., Wascher, E., Wauschkuhn, B., Jaskowski, P., Allouni, B., Trillenberg, P. and Wessel, K. (1999)Consequences of altered cerebellar input for the cortical regulation of motor coordination, as reflected in EEG potentials.Exp. Brain Res. 127, 409–422.

    Article  PubMed  CAS  Google Scholar 

  • Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. and Winter, A. L. (1964) Contingent Negative Variation: an electric sign of sensori-motor association and expectancy in the human brain.Nature 203, 380–384.

    Article  PubMed  CAS  Google Scholar 

  • Wessel, K., Verleger, R., Nazarenus, D., Vieregge, P. and Kömpf, D. (1994) Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy.Electroenceph. Clin. Neurophysiol.92, 331–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jahanshahi, M., Hallett, M. (2003). The Bereitschaftspotential: What Does It Measure and where Does It Come from?. In: Jahanshahi, M., Hallett, M. (eds) The Bereitschaftspotential. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0189-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0189-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4958-7

  • Online ISBN: 978-1-4615-0189-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics