Skip to main content

Neuronal Firing Patterns in the Subthalamic Nucleus

Effects of dopamine receptor stimulation on multisecond oscillations

  • Chapter
The Basal Ganglia VI

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 54))

Abstract

The subthalamic nucleus (STN) appears to play a critical role in mediating the hyper-and hypoactive behavioral states associated with basal ganglia pathophysiology8,11,15,17,37. Experiments designed to establish a more precise role for the STN have frequently been based on ‘dual-circuit’ models of basal ganglia motor circuitry7. These models predict that the neuronal firing rates of the STN will increase when dopamine cells of the substantia nigra pars compacta (SNc) degenerate, as occurs in Parkinson’s disease (PD). This increase in firing rate has been demonstrated in animal models of PD in both the rat and monkey 8,17,23. These models have had a profound impact on the development of effective treatment strategies for PD patients, leading to surgical procedures designed to attenuate the increase in STN neuronal firing rates. These procedures, which include high frequency stimulation and thermolytic lesion of the STN, significantly reduce the motor disturbances observed in human PD patients and in primate animal models of PD5,15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Afifi. Basal ganglia: Functional anatomy and physiology. Part 1J. Child Neurol.9[31]:249 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. K.A. Allers, D.S. Kreiss, and J.R. Walters. Multisecond oscillations in the subthalamic nucleus: effects of dopamine cell lesion and dopamine receptor stimulation.Synapse38[1]:38 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. K.A. Allers, D.N. Ruskin, D.A. Bergstrom, L.A. Molnar, and J.R. Walters, Correlations of multisecond oscillations in firing rate in pairs of basal ganglia neurons.Soc. Neurosci. Abstr.25:1929 (1999).

    Google Scholar 

  4. D. Beck, D. Ruskin, D.A. Bergstrom, and J.R. Walters, D-amphetamine (AMPH) and cocaine increase the “speed” of multisecond oscillations in globus pallidus (GP) unit activitySoc. Neurosci. Abstr.25:1819 (1999).

    Google Scholar 

  5. A.L. Benabid, A. Benazzouz, D. Hoffmann, P. Limousin, P. !Crack, and P. Pollack, Long-term electrical inhibition of deep brain targets in movement disordersMov. Disord.13:119 (1998).

    Article  PubMed  Google Scholar 

  6. H. Bergman, A. Feingold, A. Nini, A. Raz, H. Slovin, M. Abeles, and E. Vaadia, Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primatesTrends Neurosci.21:32 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. H. Bergman, T. Wichmann, and M.R. Delong, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus.Science249:1436 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. H. Bergman, T. Wichmann, B. Karmon, and M.R. Delong, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonismJ. Neurophysiol.72:507 (1994).

    PubMed  CAS  Google Scholar 

  9. C. Beurrier, P. Congar, B. Bioulac, and C. Hammond, Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode.J. Neurosci.19:599 (1999).

    PubMed  CAS  Google Scholar 

  10. .M.D. Bevan and C.J. Wilson, Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neuronsJ. Neurosci.19:7617 (1999).

    PubMed  CAS  Google Scholar 

  11. .F. Blandini, M. Gargia-Osuna, and J.T. Greenamyre, Subthalamic ablation reverses changes in basal ganglia oxidative metabolism and motor response to apomorphine induced by nigrostriatal lesion in ratsEur. J. Neurosci.9:1407 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. R.E. Dolmetsch, K. Xu, and R.S. Lewis, Calcium oscillations increase the efficiency and specificity of gene expressionNature392: 933 (1999).

    Google Scholar 

  13. G Flores, J.J. Liang, A. Sierra, D. Martinez-Fong, R. Quirion, J. Aceves, and L.K. Srivistava, Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptasepolymerase chain reaction and autoradiographyNeuroscience91:549 (1999).

    Article  PubMed  Google Scholar 

  14. .K. Fujimoto and H. Kita, Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the ratBrain Res.609: 185 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. .J. Guridi and J.A. Obeso, The role of the subthalamic nucleus in the origin of hemiballism and parkinsonism: New surgical perspectivesAdv. Neurol.74:235 (1997).

    PubMed  CAS  Google Scholar 

  16. D.L. Harrington and K.Y. Haaland, Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging researchRev. in Neurosci.10:91 (1999).

    Article  Google Scholar 

  17. K. Hassani, M. Mouroux, and J. Féger, Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidusNeuroscience72:105 (1996).

    Article  PubMed  Google Scholar 

  18. J.R. Hollerman and A.A. Grace, Subthalamic nucleus cell firing in the 6-OHDA-treated rat: Basal activity and response to haloperidolBrian Res.590:291 (1992).

    Article  Google Scholar 

  19. .R.B. Ivry, The representation of temporal information in perception and motor controlCurr. Opin. Neurobiol.6:851 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Kaneoke and J.L. Vitek, Burst and oscillations as disparate neuronal propertiesJ. Neurosci. Methods68:211 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. N. Koshiya and J.C. Smith, Neuronal pacemaker for breathing visualized in vitroNature400:360 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. D.S. Kreiss, L.A. Anderson, and J.R. Walters, Apomorphine and dopamine Direceptor agonists increase the firing rates of subthalamic nucleus neuronsNeuroscience72:863 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. D.S. Kreiss, C.W. Mastropietro, S.S. Rawji, and J.R. Walters, The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model for Parkinson’s diseaseJ. Neurosci.17:6807 (1997).

    PubMed  CAS  Google Scholar 

  24. R. Levy, L.N. Hazrati, M.T. Herrero, M. Vila, O.K. Hassani, M. Mouroux, M. Ruberg, H. Asensi, Y. Agid, J. Feger, J.A. Obeso, A. Parent, E.C. Hirsch, Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian statesNeuroscience76:335 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. W. Li, J. Llopis, M. Whitney, G Zlokamik, and R.Y. Tsien, Cell-permeant caged INsP3 ester shows that Ca2+ spike frequency can optimise gene expressionNature392:936 (1999).

    Google Scholar 

  26. J.E. Lisman, Bursts as a unit of neural information: Making unreliable synapses reliableTrends Neurosci20:38 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. .P.J. Magill, J.P. Bolam, and M.D. Bevan, Relationship of activity in the subthalamic nuclueus-globus pallidus network to cortical EEGJ. Neurosci.83[51]:3169 (2000).

    Google Scholar 

  28. .M. Matsumara, J. Kojima, W.T. Gardiner, and O. Hikosaka, Visual and oculomotor functions of the monkey subthalamic nucleusJ Neurophysiol.67:1615 (1992).

    Google Scholar 

  29. N. Maurice, J.M. Deniau, J. Glowinski, and A.M. Thierry, Relationships between the prefrontal cortex and the basal ganglia in the rat: Physiology of the corticosubthalamic circuitsJ. Neurosci.18:9539 (1998).

    PubMed  CAS  Google Scholar 

  30. E.M. Maynard, N.G. Hatsopoulos, C.L. Ojakangas, B.D. Acuna, J.N. Sanes, R.A. Normann, and J.P. Donoghue, Neuronal interactions improve cortical population coding of movement directionJ. Neurosci.19:8083 (1999).

    PubMed  CAS  Google Scholar 

  31. .W.H. Meck, Neuropharmacology of timing and time perceptionCognit. Brain Res.3:227 (1996). 32.M.R. Mehta and H. Bergman, Loss of frequencies in autocorrelations and a procedure to recover themJ.Neurosci. Methods62:65 (1995).

    Article  Google Scholar 

  32. M.R. Mehta and H. Bergman, Loss of frequencies in autocorrelations and a procedure to recover them, J.Neurosci. Methods 62:65 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. G. Mengod, M.T. Villaro, G.B. Landwehrmeyer, M.I. Martinez-Mir, H.B. Niznik, R.K. Sunahara, P. Seeman, B.F. O’Dowd, A. Probst, and J.M. Palacios, Visualizaiton of Dopamine D1, D2, and D3 receptor mRNAs in human and rat brainNeurochem. Int.20:33S–43S (1992).

    Article  PubMed  CAS  Google Scholar 

  34. H. Nakanishi, H. Kita, and S.T. Kitai, Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparationBrain Res.437:35 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. P.G Overton and S.A. Greenfield, Determinants of neuronal firing pattern in the guinea-pig subthalamic nucleus: Anin vivoandin vitrocomparisonJ. Neural Transm. Park. Dis. Demet. Sect.10:41 (1995).

    Article  CAS  Google Scholar 

  36. D. Plenz and S.T. Kitai, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidusNature400:677 (1999).

    Article  Google Scholar 

  37. J.M. Provenzale and J.P. Glass, Hemiballismus: CT and MR findingsJ. Comput. Assist. Tomogr.19:537 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. B. Rouzaire-Dubois and E. Scarnati, Pharmacological study of the cortical-induced excitation of subthalamic nucleus neurons in the rat: Evidence for amino acids as putative neurotransmittersNeuroscience21:429 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. D.N. Ruskin, D.A. Bergstrom, Y. Kaneoke, B.N. Patel, M.J. Twery, and J.R. Walters, Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesiaJ. Neurophysiol.81:2046 (1999).

    PubMed  CAS  Google Scholar 

  40. D.N. Ruskin, D.A. Bergstrom, and J.R. Walters, Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 and D2 receptorsJ. Pharmacol. Exp. Ther.290:1493 (1999).

    PubMed  CAS  Google Scholar 

  41. L.J. Ryan and K.B. Clark, The role of the subthalamic nucleus in the response of glubus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in ratsExp. Brain Res.86:641 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. L.J. Ryan and K.B. Clark, Alteration of neuronal responses in the subthalamic nucleus following globus pallidus and neostriatal lesions in ratsBrain Res.Bull.29:319 (1992).

    Article  PubMed  CAS  Google Scholar 

  43. L.J. Ryan, D.J. Sanders, and K.B. Clark, Auto-and cross-correlation analysis of subthalamic nucleus neuronal activity in neostriatal-and globus pallidal-lesioned ratsBrain Res.583:253 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. J. Sutin, T. Tsubowkawa, and R.L. McBride, Raphe neurons and barbiturate induced rhythmic activity in the subthalamic nucleus and ventral tegmental areaBrian Res Bull.1:93 (1976).

    Article  Google Scholar 

  45. J.K. Wamsley, M.E. Alburges, R.D. McQuade, and M. Hunt, CNS distribution of DIreceptors: Use of a new specific Direceptor agonist, [3H]SCH39166Neurochem. Int.20 Suppl.: 123S (1992).

    Article  PubMed  CAS  Google Scholar 

  46. T. Wichmann, H. Bergman, and M.R. Delong, The primate subthalamic nucleus. I. Functional properties in intact animals, J. Neurophysiol. 72–494 (1994).

    PubMed  CAS  Google Scholar 

  47. T. Wichmann and M.R. Delong, Functional and pathophysiological models of the basal gangliaCurr. Opin. Neurobiol.6:751 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allers, K.A., Walters, J.R., Kreiss, D.S. (2002). Neuronal Firing Patterns in the Subthalamic Nucleus. In: Graybiel, A.M., Delong, M.R., Kitai, S.T. (eds) The Basal Ganglia VI. Advances in Behavioral Biology, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0179-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0179-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4955-6

  • Online ISBN: 978-1-4615-0179-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics