Skip to main content

Neuropilins as Semaphorin Receptors

In vivo Functions in Neuronal Cell Migration and Axon Guidance

  • Chapter
Neuropilin: From Nervous System to Vascular and Tumor Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 515))

Abstract

After the initial discovery of neuropilin-1 as an epitope on axons recognized by a monoclonal antibody, neuropilins were rediscovered in the search for receptors mediating the repulsive actions of class 3 Semaphorins, notably Sema3A. Neuropilins are the ligand binding moieties in the class 3 Semaphorin receptor complexes, with the signaling moieties apparently provided by members of the plexin family. In their capacity as Semaphorin receptors, neuropilins have been shown to transduce repulsive guidance signals that direct a large variety of cell migration and axon guidance events. We summarize their demonstrated roles in driving axon fasciculation, channeling various axonal populations, inhibiting axonal branching, creating exclusion zones for axons, and providing directional guidance cues by being presented in gradients. In addition to their roles in repulsive axon guidance, evidence is accumulating that neuropilins also transduce some attractive guidance functions of Semaphorins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolodkin AL, Matthes DJ, O’Connor TP et al. Fasciclin IV: Sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 1992; 9:831–845.

    Article  PubMed  CAS  Google Scholar 

  2. Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of trans-membrane and secreted growth cone guidance molecules. Cell 1993; 75:1389–1199.

    Article  PubMed  CAS  Google Scholar 

  3. Luo Y, Raible D, Raper JA. Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993; 75:217–227.

    Article  PubMed  CAS  Google Scholar 

  4. Puschel AW, Adams RH, Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 1995; 14:941–948.

    Article  PubMed  CAS  Google Scholar 

  5. Luo Y, Shepherd I, Li J et al. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 1995; 14:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  6. Adams RH, Betz H, Puschel AW. A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mech Dev 1996; 57:33–45.

    Article  PubMed  CAS  Google Scholar 

  7. Matthes DJ, Sink H, Kolodkin AL et al. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 1995; 81:631–639.

    Article  PubMed  CAS  Google Scholar 

  8. Winberg ML, Noordermeer JN, Tamagnone L et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 1998; 95:903–916.

    Article  PubMed  CAS  Google Scholar 

  9. Messersmith EK, Leonardo ED, Shatz CJ et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 1995; 14:949–959.

    Article  PubMed  CAS  Google Scholar 

  10. Varela-Echavarria A, Tucker A, Puschel AW et al. Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 1997; 18:193–207.

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi H, Koppel AM, Luo Y et al. A role for collapsin-1 in olfactory and cranial sensory axon guidance. J Neurosci 1997; 17:8339–8352.

    PubMed  CAS  Google Scholar 

  12. Bagnard D, Lohrum M, Uziel D et al. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development 1998; 125:5043–5053.

    PubMed  CAS  Google Scholar 

  13. Chedotal A, Del Rio JA, Ruiz M et al. Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 1998; 125:4313–4323.

    PubMed  CAS  Google Scholar 

  14. Rabacchi SA, Solowska JM, Kruk B et al. Collapsin-l/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J Neurosci 1999; 19:4437–4448.

    PubMed  CAS  Google Scholar 

  15. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997; 90:739–751.

    Article  PubMed  CAS  Google Scholar 

  16. Kolodkin AL, Levengood DV, Rowe EG et al. Neuropilin is a semaphorin III receptor. Cell 1997; 90:753–762.

    Article  PubMed  CAS  Google Scholar 

  17. Feiner L, Koppel AM, Kobayashi H et al. Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron 1997; 19:539–545.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi T, Nakamura F, Strittmatter SM. Neuronal and non-neuronal collapsin-1 binding sites in developing chick are distinct from other semaphorin binding sites. J Neurosci 1997; 17:9183–9193.

    PubMed  CAS  Google Scholar 

  19. Eickholt BJ, Morrow R, Walsh FS et al. Structural features of collapsin required for biological activity and distribution of binding sites in the developing chick. Mol Cell Neurosci 1997; 9:358–371.

    Article  PubMed  CAS  Google Scholar 

  20. Kitsukawa T, Shimizu M, Sanbo M et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997; 19:995–1005.

    Article  PubMed  CAS  Google Scholar 

  21. Taniguchi M, Yuasa S, Fujisawa H et al. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 1997; 19:519–530.

    Article  PubMed  CAS  Google Scholar 

  22. Koppel AM, Feiner L, Kobayashi H et al. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 1997; 19:531–537.

    Article  PubMed  CAS  Google Scholar 

  23. Giger RJ, Pasterkamp RJ, Holtmaat AJ et al. Semaphorin III: role in neuronal development and structural plasticity. Prog Brain Res 1998; 117:133–149.

    Article  PubMed  CAS  Google Scholar 

  24. Chen H, Chedotal A, He Z et al. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 1997; 19:547–559.

    CAS  Google Scholar 

  25. Giger RJ, Urquhart ER, Gillespie SK et al. Neuropilin-2 is a receptor for semaphorin IV: Insight into the structural basis of receptor function and specificity. Neuron 1998; 21:1079–1092.

    Article  PubMed  CAS  Google Scholar 

  26. Chen H, He Z, Bagri A et al. Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 1998; 21:1283–1290.

    Article  PubMed  CAS  Google Scholar 

  27. Giger RJ, Cloutier JF, Sahay A et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 2000; 25:29–41.

    Article  PubMed  CAS  Google Scholar 

  28. Chen H, Bagri A, Zupicich JA et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 2000; 25:43–56.

    Article  PubMed  Google Scholar 

  29. Takahashi T, Nakamura F, Jin Z et al. Semaphorins A and E act as antagonists of neuropilin1 and agonists of neuropilin-2 receptors. Nat Neurosci 1998; 1:487–493.

    Article  PubMed  CAS  Google Scholar 

  30. Koppel AM, Raper JA. Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J Biol Chem 1998; 273:15708–15713.

    Article  PubMed  CAS  Google Scholar 

  31. Klostermann A, Lohrum M, Adams RH et al. The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J Biol Chem 1998; 273:7326–7331.

    Article  PubMed  CAS  Google Scholar 

  32. Tamagnone L, Artigiani S, Chen H et al. Plexins are a large family of receptors for trans-membrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99:71–80.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi T, Fournier A, Nakamura F et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 1999; 99:59–69.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi T, Strittmatter SM. Plexinal autoinhibition by the plexin sema domain. Neuron 2001; 29:429–439.

    Article  PubMed  CAS  Google Scholar 

  35. Rohm B, Ottemeyer A, Lohrum M et al. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev 2000; 93:95–104.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng HJ, Bagri A, Yaron A et al. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 2001; 32:249–263.

    Google Scholar 

  37. Tessier-Lavigne M. Eph receptor tyrosine kinases, axon repulsion, and the development of topographic maps. Cell 1995; 82:345–348.

    Article  PubMed  CAS  Google Scholar 

  38. Keynes R, Tannahill D, Morgenstern DA et al. Surround repulsion of spinal sensory axons in higher vertebrate embryos. Neuron 1997; 18:889–897.

    Article  PubMed  CAS  Google Scholar 

  39. Cloutier JF, Giger RJ, Koentges G et al. Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 2002; 33:877–892.

    Article  PubMed  CAS  Google Scholar 

  40. Bagnard D, Chounlamountri N, Puschel AW et al. Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb Cortex 2001; 11:278–285.

    Article  PubMed  CAS  Google Scholar 

  41. Fu SY, Sharma K, Luo Y et al. SEMA3A regulates developing sensory projections in the chicken spinal cord. J Neurobiol 2000; 45:227–236.

    Article  PubMed  CAS  Google Scholar 

  42. Puschel AW, Adams RH, Betz H. The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins. Mol Cell Neurosci 1996; 7:419–431.

    Article  PubMed  CAS  Google Scholar 

  43. Behar 0, Golden JA, Mashimo H et al. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 1996; 383:525–528.

    Article  PubMed  CAS  Google Scholar 

  44. Renzi MJ, Wexler TL, Raper JA. Olfactory sensory axons expressing a dominant-negative semaphorin receptor enter the CNS early and overshoot their target. Neuron 2000; 28:437–447.

    Article  PubMed  CAS  Google Scholar 

  45. Zou Y, Stoeckli E, Chen H et al. Squeezing axons out of the gray matter: A role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 2000; 102:363–375.

    Article  PubMed  CAS  Google Scholar 

  46. Henke-Fahle S, Beck KW, Puschel AW. Differential responsiveness to the chemorepellent Semaphorin 3A distinguishes ipsi-and contralaterally projecting axons in the chick mid-brain. Dev Biol 2001; 237:381–397.

    Article  PubMed  CAS  Google Scholar 

  47. Marin 0, Yaron A, Bagri A et al. Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 2001; 293:872–875.

    Article  PubMed  CAS  Google Scholar 

  48. Polleux F, Giger RJ, Ginty DD et al. Patterning of cortical efferent projections by semaphorinneuropilin interactions. Science 1998; 282:1904–1906.

    Article  PubMed  CAS  Google Scholar 

  49. Bagnard D, Thomasset N, Lohrum M et al. Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J Neurosci 2000; 20:1030–1035.

    PubMed  CAS  Google Scholar 

  50. Sugimoto Y, Taniguchi M, Yagi T et al. Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 2001; 128:3321–3330.

    PubMed  CAS  Google Scholar 

  51. de Castro F, Hu L, Drabkin H et al. Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J Neurosci 1999; 19:4428–4436.

    PubMed  Google Scholar 

  52. Song H, Ming G, He Z et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998; 281:1515–1518.

    Article  PubMed  CAS  Google Scholar 

  53. Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 2000; 404:567–573.

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura F, Kalb RG, Strittmatter SM. Molecular basis of semaphorin-mediated axon guidance. J Neurobiol 2000; 44:219–229.

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura F, Tanaka M, Takahashi T et al. Neuropilin-1 extracellular domains mediate semaphorin D/111-induced growth cone collapse. Neuron 1998; 21:1093–1100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bagri, A., Tessier-Lavigne, M. (2002). Neuropilins as Semaphorin Receptors. In: Bagnard, D. (eds) Neuropilin: From Nervous System to Vascular and Tumor Biology. Advances in Experimental Medicine and Biology, vol 515. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0119-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0119-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4932-7

  • Online ISBN: 978-1-4615-0119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics