Skip to main content

Immune-Promoted Tumor Cell Invasion and Metastasis

New considerations in cancer therapy

  • Chapter
New Trends in Cancer for the 21st Century

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 532))

Abstract

Available information shows that the immune system does not spontaneously reject malignant tumors. In addition, medical maneuvers to stimulate an immune response against established tumors do not show repetitive good results. Apparently, malignant tumor cells escape immune recognition and attack through multiple molecular mechanisms. Laboratory experiments show that properly stimulated specific CD8+ T cells, some CD4+ T cells, NK cells, and macrophages are capable of killing tumor cells. But, even in experimentally controlled conditions, a regular, complete, reliable and applicable tumor immune rejection has not been achieved yet. The birth of monoclonal antibodies, easy to produce in the laboratory and with very restricted target recognition, initiated a wave of expectation in the anti-cancer immune therapy believers. The “magic bullet” concept became popular, many new tumor antigens were discovered and new anti-tumor antigen antibodies developed. Thirty years after monoclonal antibodies introduction, few if any of those antibodies have shown a reliable anticancer curative effect. A question is raised looking at this defeating scenario: Is the immune system prepared to reject tumors? The plain answer to this question is another question: Why not? The immune system recognizes damaged cells and eliminates them in a continuous process of tissue repair. If tumor cells are identified as damaged cells the immune system should eliminate them. Nevertheless, in normally differentiated tissues, after elimination of damaged cells, a process of cell substitution and remodeling takes place based on recruitment of reserve cells and stem cells. Normal tissue repair involves, among other features, immune system cells and blood cells. Bone marrow derived scavenger cells remove cell debris. A controlled inflammatory cellular infiltration guaranties local replacement of connective matrix, cell motility/translocation, and neoangiogenesis. Apparently, tumor tissue replacement doesn’t need stem cells while tumor cells can divide infinitely. Therefore, the elimination of tumor cells is a mater of imbalance: if the elimination process is faster the tumor disappear, but if the replacement process is faster the tumor grows. In addition, the particular performance of tumor cells disturbs the repair process and, in consequence, tumor connective matrix replacement, cell relocation, and neoangiogenesis are in chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hellstrom I, Hellstrom KE, Pierce GE, Yang JP. Cellular and humoral immunity to different types of human neoplasms. Nature. 220(174): 1352–1354. 1968.

    Article  PubMed  CAS  Google Scholar 

  2. Hellstrom I, Hellstrom KE, Sjogren HO, Warner GA. Demonstration of cell-mediated immunity to human neoplasms of various histological types. Int J Cancer. 7(1): 1–16. 1971.

    Article  PubMed  CAS  Google Scholar 

  3. Sjogren HO, Hellstrom I, Bansal SC, Hellstrom KE. Suggestive evidence that the “blocking antibodies” of tumor-bearing individuals may be antigen-antibody complexes. Proc Natl Acad Sci U S A. 68(6):1372–1375. 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Sjogren HO, Hellstrom I, Bansal SC, Warner GA, Hellstrom KE. Elution of “blocking factors” from human tumors, capable of abrogating tumor-cell destruction by specifically immune lymphocytes. Int J Cancer. 9(2): 274–283. 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Tamerius J, Nepom J, Hellstrom I, Hellstrom KE. Tumor-associated blocking factors: isolation from sera of tumor-bearing mice. J Immunol. 116(3): 724–730. 1976.

    PubMed  CAS  Google Scholar 

  6. Nepom JT, Hellstrom I, Hellstrom KE. Antigen-specific purification of blocking factors from sera of mice with chemically induced tumors. Proc Natl Acad Sci U S A. 74(10): 4605–4609. 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Prehn RT, Lappe MA. An immunostimulation theory of tumor development. Transplant Rev. 7:26–54. 1971.

    PubMed  CAS  Google Scholar 

  8. Prehn RT. The immune reaction as a stimulator of tumor growth. Science. 176(31): 170–171. 1972.

    Article  PubMed  CAS  Google Scholar 

  9. Prehn RT. Immunomodulation of tumor growth. Am J Pathol. 77(1): 119–122. 1974.

    PubMed  CAS  Google Scholar 

  10. Murasko DM, Prehn RT. Stimulatory effect of immunization on tumor induction by Moloney murine sarcoma virus. J Natl Cancer Inst. 61(5):1323–1327. 1978.

    PubMed  CAS  Google Scholar 

  11. Lawler EM, Prehn RT. Influence of immune status of host on immunogenicity of tumors induced with two doses of methylcholanthrene. Cancer Immunol Immunother. 13(3):194–197. 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Hewitt HB, Blake ER, Walder AS. A critique of the evidence for active host defense against cancer, based on personal studies of 27 murine tumors of spontaneous origin. Br J Cancer. 33(3): 241–259. 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Prehn RT. Stimulatory effects of immune reactions upon the growths of untransplanted tumors. Cancer Res. 54(4): 908–914. 1994.

    PubMed  CAS  Google Scholar 

  14. Manson LA. Anti-tumor immune responses of the tumor-bearing host: the case for antibody-mediated immunologic enhancement. Clin Immunol Immunopathol. 72(1): 1–8. 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Manson LA. The role of anti-tumor antibody in progressive tumor growth. Transplant Proc. 16(2): 524–527. 1984.

    PubMed  CAS  Google Scholar 

  16. Monach PA, Schreiber H, Rowley DA. CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation. 55(6): 1356–1361. 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF Jr, Feng L, Sampsel JW. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48(10): 541–549. 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Quan N, Zhang Z, Demetrikopoulos MK, Kitson RP, Chambers WH, Goldfarb RH, Weiss JM. Evidence for involvement of B lymphocytes in the surveillance of lung metastasis in the rat. Cancer Res. 59(5): 1080–1089.1999.

    Google Scholar 

  19. Shingu K, Helfritz A, Kuhlmann S, Zielinska-Skowronek M, Jacobs R, Schmidt RE, Pabst R, von Horsten S. Kinetics of the early recruitment of leukocyte subsets at the sites of tumor cells in the lungs: natural killer (NK) cells rapidly attract monocytes but not lymphocytes in the surveillance of micrometastasis. Int J Cancer. 99(1): 74–81. 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T. B cells inhibit induction of T cell-dependent tumor immunity. Nat Med. 4(5): 627–630. 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G, Eisenbach L.Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nat Med. 1(11): 1179–1183. 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Wang R, Taniguchi M.Limited T cell antigen receptor repertoire in tumor-infiltrating lymphocyte and inhibition of experimental lung metastasis of murine melanoma by anti-TCR antibody. J Immunol. 154(4): 1797–1803. 1995.

    PubMed  CAS  Google Scholar 

  23. Emilio Barbera-Guillem, Julie K. Nyhus, Chris C. Wolford, Chad R. Friece, and James W. Sampsel,Vascular endothelial growth factor secretion by tumor infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune-complexes potentiate the process. Cancer Res. In publication. 2002

    Google Scholar 

  24. Koeppen HK, Singh S, Stauss HJ, Park BH, Rowley DA, Schreiber H. CD4-positive and B lymphocytes in transplantation immunity. I. Promotion of tumor allograft rejection through elimination of CD4positive lymphocytes. Transplantation. 55(6): 1349–1355. 1993.

    Article  PubMed  CAS  Google Scholar 

  25. O’Boyle KP, Goya V, Zuckier LS, Chun S, Bhargava K. Expression of human tumor mucin-associated carbohydrate epitopes, including sialylated Tn, and localization of murine monoclonal antibodies CC49 and B72.3 in a syngeneic rat colon carcinoma model. J Immunother Emphasis Tumor Immunol. 16(4): 251–261. 1994.

    Article  PubMed  Google Scholar 

  26. Nelson MB, Nyhus JK, Oravecz-Wilson KI, Barbera-Guillem E. Tumor cells express FcgammaRI which contributes to tumor cell growth and a metastatic phenotype. Neoplasia. 3(2): 115–124 2001.

    Article  Google Scholar 

  27. Horst HA, Horny HP Tumor-infiltrating lymphoreticular cells. Histologic and immunohistologic investigations performed on metastasizing squamous cell carcinomas of the head and neck. Cancer. 1991 Dec 1;68(11):2397–2402.

    Article  Google Scholar 

  28. Tjiong MY, Zumbach K, Schegget JT, van der Vange N, Out TA, Pawlita M, Struyk L. Antibodies against human papillomavirus type 16 and 18 E6 and E7 proteins in cervicovaginal washings and serum of patients with cervical neoplasia. Viral Immunol. 14(4): 415–424.2001.

    Article  PubMed  CAS  Google Scholar 

  29. Behrends U, Jandl T, Golbeck A, Lechner B, Muller-Weihrich S, Schmid I, Till H, Berthold F, Voltz R, Mautner JM. Novel products of the HUD, HUC, NNP-1 and alpha-internexin genes identified by autologous antibody screening of a pediatric neuroblastoma library. Int J Cancer. 100(6): 669–677. 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Sofen H, OToole C. Anti-squamous tumor antibodies in patients with squamous cell carcinoma. Cancer Res. 38(1): 199–203. 1978.

    PubMed  CAS  Google Scholar 

  31. Brichory F, Beer D, Le Naour F, Giordano T, Hanash S. Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res. 61(21): 7908–7912. 2001.

    PubMed  CAS  Google Scholar 

  32. Berczi I, McMorris LS, Thoriakson TK, Thoriakson RH, Kellen JA, Sehon AH. Detection of tumor antibodies in patients with gastrointestinal carcinomas by a solid-phase radioimmunoassay. J Natl Cancer Inst. 63(3): 553–566. 1979.

    Google Scholar 

  33. Knuth A, Lloyd KO, Lipkin M, Oettgen HF, Old LJ. Natural antibodies in human sera directed against blood-group-related determinants expressed on colon cancer cells. Int J Cancer. 32(2): 199–204. 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Butschak G, Karsten U. Isolation and characterization of thomsen-friedenreich-specific antibodies from human serum. Tumour Biol. 23(3): 113–122. 2002.

    Article  PubMed  CAS  Google Scholar 

  35. von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P, Verstraeten AA, van Kamp GJ, Kok A, van Uffelen K, Snijdewint FG, Paul MA, Meijer S, Hilgers J. An enzyme-linked immunosorbent assay for the measurement of circulating antibodies to polymorphic epithelial mucin (MUC1). Tumour Biol. 19(3): 186–195.1998.

    Article  Google Scholar 

  36. von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P, Snijdewint FG, Kok A, Van Kamp GJ, Paul MA, Van Diest PJ, Meijer S, Hilgers J. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol. 18(3): 574–583.2000.

    Google Scholar 

  37. Scanlan MJ, Welt S, Gordon CM, Chen YT, Gure AO, Stockert E, Jungbluth AA, Ritter G, Jager D, Jager E, Knuth A, Old LJ. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 62(14): 4041–4047. 2002.

    PubMed  CAS  Google Scholar 

  38. Lee YT, Sheikh KM, Quismorio FP Jr, Friou GJ. Circulating anti-tumor and autoantibodies in breast carcinoma: relationship to stage and prognosis. Breast Cancer Res Treat. 6(1):57–65 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Meyer EM, Grundmann E. Lymph node reactions to cancer. Klin Wochenschr 60(21):1329–1338. 1982.

    Article  Google Scholar 

  40. Mariani-Costantini R, Muraro R, Ficari F, Valli C, Bei R, Tone lli F, Caramia F, Frati L. Immunohistochemical evidence of immune responses to tumor-associated antigens in lymph nodes of colon carcinoma patients. Cancer. 67(11): 2880–2886. 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Michalak T, Krawczynski K, Harlozinska A, Potomski J, Albert Z. Localization of carcinoembryonic antigen in mesenteric lymph nodes of patients with gastrointestinal cancer. Neoplasma. 30(1): 67–72. 1983.

    PubMed  CAS  Google Scholar 

  42. Triozzi PL, Kim JA, Aldrich W, Young DC, Sampsel JW, Martin EW Jr. Localization of tumor-reactive lymph node lymphocytes in vivo using radiolabeled monoclonal antibody. Cancer. 73(3):580–589. 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Arnold MW, Young DC, Hitchcock CL, Schneebaum S, Martin EW Jr. Radioimmunoguided surgery in primary colorectal carcinoma: an intraoperative prognostic tool and adjuvant to traditional staging. Am J Surg. 170(4): 315–318. 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Potomski J, Harlozinska A, Starzky H, Richter R, Wozniewski A. Correlation between immunohistochemical localization of carcinoembryonic antigen (CEA) and histological estimation of carcinomas, normal mucosae and lymph nodes of the digestive tract in humans. Arch Immunol Ther Exp (W ars z). 27(1–2): 177–186 1979.

    CAS  Google Scholar 

  45. Loy TS, Haege DD. B72.3 immunoreactivity in benign abdominal lymph nodes associated with gastrointestinal disease. Dis Colon Rectum. 38(9): 983–987. 1995.

    Article  PubMed  CAS  Google Scholar 

  46. Cernea C, Montenegro F, Castro I, Cordeiro A, Gayotto L, Ferraz A, de Carlucci D Jr. Prognostic significance of lymph node reactivity in the control of pathologic negative node squamous cell carcinomas of the oral cavity. Am J Surg. 174(5): 548–551. 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Herr HW, Bean MA, Whitmore WF. Jr. Prognostic significance of regional lymph node histology in cancer of the bladder. J Urol. 115(3): 264–267. 1976.

    Google Scholar 

  48. Riegrova D, Jansa P. Prognostic significance of reactive changes in regional lymph nodes in gastric and mammary carcinomas. Neoplasma. 29(4): 481–486. 1982.

    PubMed  CAS  Google Scholar 

  49. Barbera-Guillem E, Arnold MW, Nelson MB, Martin EW Jr. First results for resetting the antitumor immune response by immune corrective surgery in colon cancer. Am J Surg. 176(4): 339–343. 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Hitchcock CL, Arnold MW, Young DC, Schneebaum S, Martin EW Jr. TAG-72 expression in lymph nodes and RIGS. Dis Colon Rectum. 39(4): 473–475. 1996.

    Article  PubMed  CAS  Google Scholar 

  51. Fu YX, Huang G, Wang Y, Chaplin DD. Lymphotoxin-alpha-dependent spleen microenvironment supports the generation of memory B cells and is required for their subsequent antigen-induced activation. J Immunol. 164(5): 2508–2514. 2000.

    PubMed  CAS  Google Scholar 

  52. Wang J, Foster A, Chin R, Yu P, Sun Y, Wang Y, Pfeffer K, Fu YX. The complementation of lymphotoxin deficiency with LIGHT, a newly discovered TNF family member, for the restoration of secondary lymphoid structure and function. Eur J Immunol. 32(7): 1969–1979. 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Ryffel B, Di Padova F, Schreier MH, Le Hir M, Eugster HP, Quesniaux VF. Lack of type 2 T cell-independent B cell responses and defect in isotype switching in TNF-lymphotoxin alpha-deficient mice. J Immunol 1997 Mar 1;158(5):2126–2133

    Google Scholar 

  54. Fu YX, Huang G, Wang Y, Chaplin DD.B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin alpha-dependent fashion. J Exp Med. 187(7): 1009–1018. 1998.

    Article  PubMed  CAS  Google Scholar 

  55. De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science. 264(5159): 703–707. 1994.

    Article  PubMed  Google Scholar 

  56. Kumaraguru U, Davis IA, Deshpande S, Tevethia SS, Rouse BT. Lymphotoxin alpha-/- mice develop functionally impaired CD8+ T cell responses and fail to contain virus infection of the central nervous system. J Immunol. 166(2):1066–1074. 2001.

    PubMed  CAS  Google Scholar 

  57. Eo SK, Kumaraguru U, Rouse BT. Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol. 167(7): 3592–3599. 2001.

    PubMed  CAS  Google Scholar 

  58. Elewaut D, Brossay L, Santee SM, Naidenko OV, Burdin N, De Winter H, Matsuda J, Ware CF, Cheroutre H, Kronenberg M. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J Immunol 2000 Jul 15;165(2):671–679.

    PubMed  CAS  Google Scholar 

  59. Ito D, Back TC, Shakhov AN, Wiltrout RH, Nedospasov SA. Mice with a targeted mutation in lymphotoxin-alpha exhibit enhanced tumor growth and metastasis: impaired NK cell development and recruitment. J Immunol. 163(5): 2809–2815. 1999.

    PubMed  CAS  Google Scholar 

  60. Ruddle NH. Lymphoid neo-organogenesis: lymphotoxin’s role in inflammation and development. Immunol Res. 19(2–3): 119–125. 1999.

    Article  PubMed  CAS  Google Scholar 

  61. Bevilacqua MP, Nelson RM Endothelial-leukocyte adhesion molecules in inflammation and metastasis. Thromb Haemost. 70(1): 152–154. 1993.

    Google Scholar 

  62. Chen WS, Wei SJ, Liu JM, Hsiao M, Kou-Lin J, Yang WK. Tumor invasiveness and liver metastasis of colon cancer cells con-elated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2selective inhibitor, etodolac. Int J Cancer. 2001 Mar 15;91(6):894–9.

    Article  PubMed  CAS  Google Scholar 

  63. Wang Y, Huang G, Wang J, Molina H, Chaplin DD, Fu YX. Antigen persistence is required for somatic mutation and affinity maturation of immunoglobulin. Eur J Immunol. 30(8): 2226–2234. 2000.

    Article  PubMed  CAS  Google Scholar 

  64. Anderson F, Game BA, Atchley D, Xu M, Lopes-Virella MF, Huang Y. IFN-gamma pretreatment augments immune complex-induced matrix metalloproteinase-1 expression in U937 histiocytes. Clin Immunol. 102(2): 200–207. 2002.

    Article  PubMed  CAS  Google Scholar 

  65. Warner RL, Lewis CS, Beltran L, Younkin EM, Varani J, Johnson KJ. The role of metalloelastase in immune complex-induced acute lung injury. Am J Pathol. 158(6): 2139–2144. 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Anderson CF, Mosser DM.A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol. 72(1): 101–106.2002.

    PubMed  CAS  Google Scholar 

  67. van Ravenswaay Claasen, H.H., Kluin, P.M., and Fleuren, G.J. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity.Lab. Invest.67(2):166–174, 1992.

    PubMed  CAS  Google Scholar 

  68. Wang ZQ, Bapat AS, Rayanade RJ, Dagtas AS, Hoffmann MK.Interleukin-10 induces macrophage apoptosis and expression of CD16 (FcgammaRlll) whose engagement blocks the cell death programme and facilitates differentiation. Immunology. 102(3): 331–337. 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Cameron AJ, McDonald KJ, Harnett MM, Allen JM. Differentiation of the human monocyte cell line, U937, with dibutyryl cyclicAMP induces the expression of the inhibitory Fc receptor, FcgammaRllb. Immunol Lett. 83(3): 171–179. 2002.

    Article  PubMed  CAS  Google Scholar 

  70. Tridandapani S, Siefker K, Teillaud JL, Carter JE, Wewers MD, Anderson CL. Regulated expression and inhibitory function of Fcgamma RIIb in human monocytic cells. J Biol Chem. 277(7): 5082–5089. 2002.

    Article  PubMed  CAS  Google Scholar 

  71. Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model (1,2). Free Radic Biol Med. 33(3): 303–310. 2002.

    Article  PubMed  Google Scholar 

  72. Anderson CF, Mosser DM. Cutting edge: biasing immune responses by directing antigen to macrophage Fc gamma receptors. J Immunol. 168(8): 3697–3701. 2002.

    PubMed  CAS  Google Scholar 

  73. Coxon A, Cullere X, Knight S, Sethi S, Wakelin MW, Stavrakis G, Luscinskas FW, Mayadas TN.Fc gamma RIII mediates neutrophil recruitment to immune complexes. A mechanism for neutrophil accumulation in immune-mediated inflammation. Immunity. 14 (6): 693–704. 2001.

    Article  PubMed  CAS  Google Scholar 

  74. Fossati G, Bucknall RC, Edwards SW. Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. Ann Rheum Dis. 61(1): 13–19. 2002.

    Article  Google Scholar 

  75. Nyhus JK, Wolford CC, Friece CR, Nelson MB, Sampsel JW, Barbera-Guillem E. IgG-recognizing shed tumor-associated antigens can promote tumor invasion and metastasis. Cancer Immunol Immunother. 50(7): 361–372. 2001.

    Article  Google Scholar 

  76. Barbera-Guillem E, May KF Jr, Nyhus JK, Nelson MB. Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia. 1(5): 453–60. 1999.

    Article  PubMed  CAS  Google Scholar 

  77. Swift, M.E., Kleinman, H.K., and DiPietro, L.A. Impaired wound repair and delayed angiogenesis in aged mice.Lab. Invest. 79(12): 1479–1487, 1999.

    PubMed  CAS  Google Scholar 

  78. Presta, L.G., Chen, H., O’Connor, S.J., Chisholm, V., Meng, Y.G., Krummen, L., Winkler, M., and Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disordersCancer Res., 57 (20): 4593–4599, 1997.

    PubMed  CAS  Google Scholar 

  79. Saleh, M., Stacker, S.A., and Wilks, A.F. Inhibition of growth of C6 glioma cellsin vivoby expression of antisense vascular endothelial growth factor sequenceCancer Res.,56(2):393–401, 1996.

    PubMed  CAS  Google Scholar 

  80. Borgstrom, P., Hillan, K.J., Sriramarao, P., and Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy.Cancer Res., 56(17):4032–4039, 1996.

    PubMed  CAS  Google Scholar 

  81. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. Mutant ras oncogenes up regulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis.Cancer Res., 55(20): 4575–4580, 1995.

    PubMed  CAS  Google Scholar 

  82. Yoshiji, H., Gomez, D.E., Shibuya, M., and Thorgeirsson, U.P. Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer.Cancer Res., 56(9): 2013–2016, 1996.

    PubMed  CAS  Google Scholar 

  83. Detmar, M., Velasco, P., Richard, L., Claffey, K.P., Streit, M., Riccardi, L., Skobe, M., Brown, L.F. Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am. J. Pathol., 156(1):159–167, 2000.

    Article  PubMed  CAS  Google Scholar 

  84. Kondo, Y., Arii, S., Mori, A., Furutani, M., Chiba, T. and Imamura, M. Enhancement of angiogenesis, tumor growth, and metastasis by transfection of vascular endothelial growth factor into LoVo human colon cancer cell line. Clin. Cancer Res.6(2):622–630, 2000.

    CAS  Google Scholar 

  85. Aonuma, M., Saeki, Y., Akimoto, T., Nakayama, Y., Hattori, C., Yoshitake, Y., Nishikawa, K., Shibuya, M., and Tanaka, N.G. Vascular endothelial growth factor overproduced by tumour cells acts predominantly as a potent angiogenic factor contributing to malignant progression. Int. J. Exp. Pathol., 80(5): 271–281, 1999.

    Article  PubMed  CAS  Google Scholar 

  86. Verheul, H.M., Hoekman, K., Luykx-de Bakker, S., Eekman, C.A., Folman, C.C., Broxterman, H.J., and Pinedo, H.M. Platelet: transporter of vascular endothelial growth factor. Clin. Cancer Res., 3(12 Pt 1): 2187–2190,1997.

    PubMed  CAS  Google Scholar 

  87. Wartiovaara, U., Salven, P., Mikkola, H., Lassila, R., Kaukonen, J., Joukov, V., Orpana, A., Ristimaki, A., Heikinheimo, M., Joensuu, H., Alitalo, K., and Palotie, A. Peripheral blood platelets express VEGF-C and VEGF, which are released during platelet activation. Thromb. Haemost., 80(1):171–175, 1998.

    PubMed  CAS  Google Scholar 

  88. Salven, P., Orpana, A., and Joensuu, H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin, Cancer Res., 5(3): 487–491, 1999.

    CAS  Google Scholar 

  89. Huang YQ, Li JJ, Hu L, Lee M, Karpatkin S. Thrombin induces increased expression and secretion of VEGF from human FS4 fibroblasts, DU145 prostate cells and CHRF megakaryocytes. Thromb Haemost. 86(4): 1094–1098. 2001.

    CAS  Google Scholar 

  90. Xiong, M., Elson, G., Legarda, D., and Leibovich, S.J. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway.Am. J. Pathol., 153(2):587–598, 1998.

    Article  PubMed  CAS  Google Scholar 

  91. Lu, B., Rutledge, B. J., and Gu, L. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med.187:601–608, 1998.

    Article  PubMed  CAS  Google Scholar 

  92. Takayuki Ueno, Masakazu Toi, Hisashi Saji, Mariko Muta,’Hiroko Bando, Katsumasa Kuroi, Morio Koike, Hidekuni Madera, and Kouji Matsushima. Significance of Macrophage Chemoattractant Protein-1 in Macrophage Recruitment, Angiogenesis, and Survival in Human Breast Cancer. Clin. Cancer Res.6:3282–3289, 2000.

    PubMed  CAS  Google Scholar 

  93. Shanley, T.P., Schmal, H., Warner, R.L., Schmid, E., Friedl, H.P., and Ward, P.A. Requirement for C-XC chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury. J. Immunol., 158(7):3439–3448, 1997.

    PubMed  CAS  Google Scholar 

  94. Kranz, A., Mattfeldt, T., and Waltenberger, J. Molecular mediators of tumor angiogenesis: enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. Int. J. Cancer, 84(3): 293–298, 1999.

    Article  PubMed  CAS  Google Scholar 

  95. Goede, V., Brogelli, L., Ziche, M., and Augustin, H.G. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1.Int. J. Cancer82(5): 765–770, 1999.

    Article  PubMed  CAS  Google Scholar 

  96. Brunda, M.J., Sulich, V., Wright, R.B., and Palleroni, A.V. Tumoricidal activity and cytokine secretion by tumor-infiltrating macrophages. Int. J. Cancer, 48(5):704–708, 1991.

    Article  PubMed  CAS  Google Scholar 

  97. Barbera-Guillem, E., Nyhus, J.K., Wolford, C.C., Friece C.R., and Sampsel J.W. Vascular endothelial growth factor secretion by tumor infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune-complexes potentiate the process. Cancer Res. (In press). 2002.

    Google Scholar 

  98. Jeltsch, M., Kaipainen, A., Joukov, V., Meng, X., Lakso, M., Rauvala, H., Swartz, M., Fukumura, D., Jain, R.K., and Alitalo, K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 276(5317):1423–1425, 1997.

    Article  PubMed  CAS  Google Scholar 

  99. Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med., 7(2):192–198, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guillem, E.B., Sampsel, J.W. (2003). Immune-Promoted Tumor Cell Invasion and Metastasis. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics