Skip to main content

Streptococcus pneumoniae Vaccines

  • Chapter
New Bacterial Vaccines

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Almost sixty years after the advent of penicillin, Streptococcus pneumoniae (the pneumococcus) continues to cause more deaths from invasive infections (pneumonia, meningitis and bacteremia) than any other bacterium. It is also the most common cause of acute otitis media in children, which, although less serious, is a major contributor to morbidity and a significant cost to health-care systems. Management of pneumococcal (Pn) disease is also being complicated by an alarming increase in the prevalence of penicillin- and multiple drug-resistant strains and the lack of an efficacious broadly protective vaccine. Vaccines developed to date have been directed against the type-specific polysaccharide (Ps) capsule. Anti-capsular antibodies are highly protective against homologous Pn serotypes, but purified Ps vaccines are poorly immunogenic in high-risk groups such as young children and the elderly. Moreover, protection is serotype-specific, and the existing formulation covers only 23 of the 90 known Pn types. Recently licensed Ps-protein conjugate vaccine formulations are much more immunogenic and protective in infants, but they are very expensive and serotype coverage is even more restricted. Therefore, new vaccines based on protein antigens common to all Pn types may provide a more broadly efficacious and cost-effective alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broome C. Meningococcal and pneumococcal disease vaccines. In: Progress of Vaccine Research and Development — 1996. Geneva: World Health Organization (document WHO/VRD/GEN/ 96.02), 1996:28–32.

    Google Scholar 

  2. Klein DL. Pneumococcal disease and the role of conjugate vaccines. In: Tomasz A, ed. Streptococcus pneumoniae Molecular Biology and Mechanisms of Disease. New York: Mary Ann Liebert Inc., 2000:467–477.

    Google Scholar 

  3. Austrian R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 1981; 3(Suppl.):S1–S17.

    PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1997; 46(RR-8):l–24.

    Google Scholar 

  5. Klein JO. The burden of otitis media. Vaccine 2001; 19:S2–S8.

    Google Scholar 

  6. Klugman KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev 1990; 3:171–196.

    PubMed  CAS  Google Scholar 

  7. McGee L, Klugman KP, Tomasz A. Serotypes and clones of antibiotic-resistant pneumococci. In: Tomasz A, ed. Streptococcus pneumoniae Molecular Biology and Mechanisms of Disease. New York: Mary Ann Liebert Inc., 2000: 375–379.

    Google Scholar 

  8. Klugman KP. Epidemiology, control and treatment of multiresistant pneumococci. Drugs 1996; 52(Suppl 2):42–46.

    PubMed  Google Scholar 

  9. Musher DM. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin Infect Dis 1992; 14:801–809.

    PubMed  CAS  Google Scholar 

  10. van Dam JEG, Fleer A, Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie van Leeuwenhoek 1990; 58:1–47.

    PubMed  Google Scholar 

  11. Kelly T, Dillard JP, Yother J. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect Immun 1994; 62:1813–1819.

    PubMed  CAS  Google Scholar 

  12. Nesin M, Ramirez M, Tomasz A. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J Infect Dis 1998; 177:707–713.

    PubMed  CAS  Google Scholar 

  13. MacLeod CM, Hodges R, Heidelberger M et al. Prevention of pneumococcal pneumonia by vaccination. J Exp Med 1945; 82:445–465.

    Google Scholar 

  14. Austrian R. Pneumococcal otitis media and pneumococcal vaccines, a historical perspective. Vaccine 2001; 19:S71–S77.

    Google Scholar 

  15. Briles DE, Paton JC, Nahm MH et al. Immunity to Streptococcus pneumoniae. In: Cunningham MW, Fujinami RS, eds. Effects of Microbes on the Immune System. Philadelphia: Lippincott Williams and Wilkins, 1999:263–280.

    Google Scholar 

  16. Simberkoff MS, Cross AP, Al-Ibrahim M et al. Efficacy of pneumococcal vaccine in high-risk patients: results of a Veterans Administration cooperative study. N Engl J Med 1986; 315:1318–1327.

    PubMed  CAS  Google Scholar 

  17. Ortqvist A, Hedlund J, Burman L-A et al. Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people: Swedish pneumococcal vaccine group study. Lancet 1998; 351:399–403.

    PubMed  CAS  Google Scholar 

  18. Douglas RM, Paton JC, Duncan SJ et al. Antibody response to pneumococcal vaccination in children younger than five years of age. J Infect Dis 1983; 148:131–137.

    PubMed  CAS  Google Scholar 

  19. Paton JC, Toogood IR, Cockington R et al. Antibody response to pneumococcal vaccine in children aged 5 to 15 years. Am J Dis Child 1986; 140:135–138.

    PubMed  CAS  Google Scholar 

  20. Rijkers GT, Sanders EA, Breukels MA et al. Infant B cell responses to polysaccharide determinants. Vaccine 1998; 16:1396–1400.

    PubMed  CAS  Google Scholar 

  21. Musher DM, Watson DA, Baughn RE. Genetic control of the immunological response to pneumococcal capsular polysaccharides. Vaccine 2001; 19:623–627.

    Google Scholar 

  22. Robbins JB, Austrian R, Lee CJ et al. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis 1983; 148:1136–1159.

    PubMed  CAS  Google Scholar 

  23. Lee CJ, Banks SD, Li JP. Virulence, immunity and vaccine related to S. pneumoniae. Crit Rev Microbiol 1991; 18:89–114.

    PubMed  Google Scholar 

  24. Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J Exp Med 1931; 54:437–447.

    PubMed  CAS  Google Scholar 

  25. Schneerson R, Barrera O, Sutton A et al. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 1980; 152:361–376.

    PubMed  CAS  Google Scholar 

  26. Robbins JB, Schneerson R, Anderson P et al. Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. J Am Med Assoc 1996; 276:1181–1185.

    CAS  Google Scholar 

  27. Eskola J. Polysaccharide-based pneumococcal vaccines in the prevention of acute otitis media. Vaccine 2001; 19:S78–S82.

    Google Scholar 

  28. Fraser D, Givon-Lavi N, Bilenko N et al. A decade (1989–1998) of pediatric invasive pneumococcal disease in 2 populations residing in 1 geographical location: implications for vaccine choice. Clin Infect Dis 2001; 33:421–427.

    PubMed  CAS  Google Scholar 

  29. Black S, Shinefield H, Fireman B et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 2000; 19:187–195.

    PubMed  CAS  Google Scholar 

  30. Eskola J, Kilpi T, Palmu A et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 2001; 344:403–409.

    PubMed  CAS  Google Scholar 

  31. Vakevainen M, Eklund C, Eskola J et al. Cross-reactivity of antibodies to type 6B and 6A polysaccharides of Streptococcus pneumoniae evoked by pneumococcal conjugate vaccine in infants. J Infect Dis 2001; 184:789–793.

    PubMed  CAS  Google Scholar 

  32. Obaro SK, Adegbola RA, Banya WAS et al. Carriage of pneumococci after pneumococcal vaccination. Lancet 1996; 348:271–272.

    PubMed  CAS  Google Scholar 

  33. Mbelle N, Huebner RE, Wasas AD et al. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis 1999; 180:1171–1176.

    PubMed  CAS  Google Scholar 

  34. Dagan R. Effect of vaccine on antibiotic resistant S. pneumoniae (PNC) carriage and spread. Second International Symposium on Pneumococci and Pneumococcal Disease. Sun City, South Africa, March 19–23 2000; Abstract 072.

    Google Scholar 

  35. Lipsitch M, Dykes JK, Johnson SE et al. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 2000; 18:2895–2901.

    PubMed  CAS  Google Scholar 

  36. Coffey TJ, Enright MC, Daniels M et al. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 1998; 27:73–84.

    PubMed  CAS  Google Scholar 

  37. Spratt BG, Greenwood BM. Prevention of pneumococcal disease by vaccination: does serotype replacement matter. Lancet 2000; 356:1210–1211.

    PubMed  CAS  Google Scholar 

  38. Paton JC, Lock RA, Hansman DJ. Effect of immunization with pnuemolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun 1983; 40:548–552.

    PubMed  CAS  Google Scholar 

  39. Paton JC. The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends Microbiol. 1996; 4:103–106.

    PubMed  CAS  Google Scholar 

  40. Houldsworth S, Andrew PW, Mitchell TJ. Pneumolysin stimulates production of TNFa and IL-lb by human mononuclear phagocytes. Infect Immun 1994; 62:1501–1503.

    PubMed  CAS  Google Scholar 

  41. Feldman C, Munro NC, Jeffrey DK et al. Pneumolysin induces the salient histological features of pneumococcal infection in the rat lung in vivo. Am. J. Respir. Cell Mol. Biol. 1991; 5: 416–423.

    PubMed  CAS  Google Scholar 

  42. Berry AM, Yother J, Briles DE et al. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 1989; 57:2037–2042.

    PubMed  CAS  Google Scholar 

  43. Berry AM, Alexander JE, Mitchell TJ et al. Effect of defined point mutations in the pneumolysin gene on the virulence of Streptococcus pneumoniae. Infect Immun 1995; 63: 1969–1974.

    PubMed  CAS  Google Scholar 

  44. Rubins JB, Charboneau D, Fasching C et al. Distinct roles for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am J Respir Crit Care Med 1996; 153:1339–1346.

    PubMed  CAS  Google Scholar 

  45. Paton JC, Lock RA, Lee C-J et al. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun 1991; 59: 2297–2304.

    PubMed  CAS  Google Scholar 

  46. Alexander JE, Lock RA, Peeters CCAM et al. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 1994; 62: 5683–5688.

    PubMed  CAS  Google Scholar 

  47. Musher DM, Phan HM, Baughn RE. Protection against bacteremic pneumococcal infection by antibody to pneumolysin. J Infect Dis 2001; 183:827–830.

    PubMed  CAS  Google Scholar 

  48. Berry AM, Lock RA, Hansman D et al. Contribution of auto lysin to the virulence of Streptococcus pneumoniae. Infect Immun 1989; 57: 2324–2330.

    PubMed  CAS  Google Scholar 

  49. Balachandran P, Hollingshead SK, Paton JC et al. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J Bacteriol 2001; 183: 3108–3116.

    PubMed  CAS  Google Scholar 

  50. Crain MJ, Waltman WD, Turner JS et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect Immun 1990;58: 3293–3299.

    PubMed  CAS  Google Scholar 

  51. Coral MCV, Fonseca N, Castaneda E et al. Families of pneumococcal surface protein A (PspA) of Streptococcus pneumoniae invasive isolates recovered from Colombian children. Emerging Infect Dis 2001;7: 832–836.

    Google Scholar 

  52. Briles DE, Nabors GS, Brooks-Walter A et al. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 2001;19:S87–S95.

    Google Scholar 

  53. Briles DE, Hollingshead SK, King J et al. Immunization of humans with rPspA elicits antibodies, which passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis 2000; 182: 1694–1701.

    PubMed  CAS  Google Scholar 

  54. Tu A-HT, Fulgham RL, McCory MA et al. Pneumococcal surface protein A (PspA) inhibits complement activation by Streptococcus pneumoniae. Infect Immun 1999; 67: 4720–4724.

    PubMed  CAS  Google Scholar 

  55. McDaniel LS, Yother J, Vijayakumar M et al. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J Exp Med 1987; 165: 381–394.

    PubMed  CAS  Google Scholar 

  56. Abeyta M. Pneumococcal surface protein A and capsular polysaccharide in virulence of Streptococcus pneumoniae. Microbiology. Birmingham, Alabama: University of Alabama at Birmingham 1999

    Google Scholar 

  57. Hammerschmidt S, Bethe G, Remanen P et al. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect Immun 1999; 67: 1683–1687.

    PubMed  CAS  Google Scholar 

  58. Hakansson A, Roche H, Mirza S et al. Characterization of the binding of human lactoferrin to pneumococcal surface protein A (PspA). Infect Immun 2001; 69: 3372–3381.

    PubMed  CAS  Google Scholar 

  59. Tai SS, Lee CJ, Winter RE. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect Immun 1993; 61: 5401–5405.

    PubMed  CAS  Google Scholar 

  60. Bullen JJ, Griffiths E. Iron and Infection. 2nd ed New York: John Wiley & Sons 1999.

    Google Scholar 

  61. Briese T, Hakenbeck R. Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem 1985; 146: 417–427.

    PubMed  CAS  Google Scholar 

  62. Yother J, White JM. Novel surface attachment mechanism for the Streptococcus pneumoniae protein PspA. J Bacteriol 1994; 176: 2976–2985.

    PubMed  CAS  Google Scholar 

  63. Rosenow C, Ryan P, Weiser JN et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 1997; 25: 819–829.

    PubMed  CAS  Google Scholar 

  64. Yother J, Leopold K, White J et al. Generation and properties of a Streptococcus pneumoniae mutant which does not require choline for growth. J Bacteriol 1998; 8: 2093–2101.

    Google Scholar 

  65. Yother J, Briles DE. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J Bacteriol 1992; 174: 601–609.

    PubMed  CAS  Google Scholar 

  66. McDaniel LS, McDaniel DO, Hollingshead SK et al. Comparison of the PspA sequence from Streptococcus pneumoniae EF5668 to the previously identified PspA sequence from strain Rxl and ability of PspA from EF5668 to elicit protection against pneumococci of different capsular types. Infect Immun 1998; 66: 4748–4754.

    PubMed  CAS  Google Scholar 

  67. Hollingshead SK, Becker RS, Briles DE. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 2000; 68: 5889–5900.

    PubMed  CAS  Google Scholar 

  68. Jedrzejas MJ, Hollingshead SK, Lebowitz J et al. Production and characterization of the functional fragment of pneumococcal surface protein A. Arch Biochem Biophys 2000; 373: 116–125.

    PubMed  CAS  Google Scholar 

  69. Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 1999; 67: 6533–6542.

    PubMed  CAS  Google Scholar 

  70. McDaniel LS, Ralph BA, McDaniel DO et al. Localization of protection-eliciting epitopes on PspA of Streptococcus pneumoniae between amino acid residues 192 and 260. Microb Pathogen 1994; 17: 323–337.

    CAS  Google Scholar 

  71. Nabors GS, Braun PA, Herrmann DJ et al. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies. Vaccine 2000; 18: 1743–1754.

    PubMed  CAS  Google Scholar 

  72. Wu H-Y, Nahm M, Guo Y et al. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage and infection with Streptococcus pneumoniae. J Infect Dis 1997; 175: 839–846.

    PubMed  CAS  Google Scholar 

  73. Briles DE, Ades E, Paton JC et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 2000; 68: 796–800.

    PubMed  CAS  Google Scholar 

  74. Arulanandam BP, Lynch JM, Briles DE et al. Intranasal vaccination with pneumococcal surface protein A and IL-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun 2001; 69: 6718–6724.

    PubMed  CAS  Google Scholar 

  75. Yamamoto M, McDaniel LS, Kawabata K et al. Oral immunization with PspA elicits protective humoral immunity against Streptococcus pneumoniae infection. Infect Immun 1997; 65: 640–644.

    PubMed  CAS  Google Scholar 

  76. Brooks-Walter A, Tart RC, Briles DE et al. The pspC gene encodes a second pneumococcal surface protein homologous to the gene encoding the protection-eliciting PspA protein of Streptococcus pneumoniae. ASM Annual Meeting 1997 (Abstract):35.

    Google Scholar 

  77. Hammerschmidt S, Talay S, Brandtzaeg P et al. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 1997; 25: 1113–1124.

    PubMed  CAS  Google Scholar 

  78. Hammerschmidt S, Tillig MP, Wolff S et al. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 2000; 36: 726–736.

    PubMed  CAS  Google Scholar 

  79. Zhang J-R, Mostov KE, Lamm ME et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 2000; 102: 827–837.

    PubMed  CAS  Google Scholar 

  80. Cheng Q, Finkel D, Hostetter MK. Novel purification scheme and functions for a C3–binding protein from Streptococcus pneumoniae. Biochemistry 2000; 39: 5450–5457.

    PubMed  CAS  Google Scholar 

  81. Dave S, Brooks-Walter A, Pangburn MK et al. PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 2001; 69: 3435–3437.

    PubMed  CAS  Google Scholar 

  82. Janulczyk R, lannelli F, Sjoholm AG et al. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 2000; 275: 37257–37263.

    PubMed  CAS  Google Scholar 

  83. Jarva H, Janulczyk R, Hellwage J et al. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hie protein that binds to short consensus repeats 8–11 of factor H. J Immunol 2002; 168: 1886–1894.

    PubMed  CAS  Google Scholar 

  84. Weiser JN, Austrian R, Sreenivasan PK et al. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 1994; 62: 2582–2589.

    PubMed  CAS  Google Scholar 

  85. Balachandran P, Brooks-Walter A, Virolainen-Julkunen A et al. The role of pneumococcal surface protein C (PspC) in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect Immun 2002; In Press.

    Google Scholar 

  86. Berry AM, Paton JC. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 2000; 68:133–140.

    PubMed  CAS  Google Scholar 

  87. Ogunniyi AD, Woodrow MC, Poolman JT et al. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect Immun 2001; 69: 5997–6003.

    PubMed  CAS  Google Scholar 

  88. Dintilhac A, Alloing G, Granadei C et al. Competence and virulence of S. pneuminiae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of metal permeases. Mol Microbiol 1997; 25:727–739.

    PubMed  CAS  Google Scholar 

  89. Berry AM, Paton JC. Sequence heterogeneity of PsaA, a 37-kDa putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 1996; 64 5255–5262.

    PubMed  CAS  Google Scholar 

  90. Ogunniyi AD, Folland RL, Hollingshead S et al. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 2000; 68:3028–3033.

    PubMed  CAS  Google Scholar 

  91. Lawrence MC, Pilling PA, Ogunniyi AD et al. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 1998; 6:1553–1561.

    PubMed  CAS  Google Scholar 

  92. Paton JC, Giammarinaro P. Genome-based analysis of pneumococcal virulence factors: the quest for novel vaccine antigens and drug targets. Trends Microbiol 2001; 9:515–518.

    PubMed  CAS  Google Scholar 

  93. Gosink KK, Mann ER, Guglielmo C et al. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 2000; 68:5690–5695.

    PubMed  CAS  Google Scholar 

  94. Wizemann TM, Heinrichs JH, Adamou JE et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 2001; 69:1593–1598.

    PubMed  CAS  Google Scholar 

  95. Adamou JE, Heinrichs JH, Erwin AL et al. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun 2001; 69:949–958.

    PubMed  CAS  Google Scholar 

  96. Brown JS, Ogunniyi AD, Woodrow MC et al. Immunization with components of two iron-uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun 2001; 69:6702–6706.

    PubMed  CAS  Google Scholar 

  97. Lee C-J, Lock RA, Mitchell TJ et al. Protection of infant mice from challenge with Streptococcus pneumoniae type 19F by immunization with a type 19F polysaccharide-pneumolysoid conjugate. Vaccine 1994; 12:875–878.

    PubMed  CAS  Google Scholar 

  98. Michon F, Fusco PC, Minetti CA et al. Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine 1998; 16:1732–1741.

    PubMed  CAS  Google Scholar 

  99. Wortham C, L Grinberg, DC Kaslow, DE Briles, LS McDaniel, A Lees, M Flora, CM Snapper, JJ Mond. Enhanced protective antibody responses to PspA after intranasal or subcutaneous injections of PspA genetically fused to granulocyte-macrophage colony-stimulating factor or interleukin-2. Infect. Immun.;66:1513–1520.1998

    CAS  Google Scholar 

  100. Hvalbye BK, Aaberge IS, Lovik M et al. Intranasal immunization with heat-inactivated Streptococcus pneumoniae protects mice against systemic pneumococcal infection. Infect Immun 1999; 67:4320–4325.

    PubMed  CAS  Google Scholar 

  101. Seong SY, Cho NH, Kwon IC et al. Protective immunity of microsphere-based mucosal vaccines against lethal intranasal challenge with Streptococcus pneumoniae. Infect Immun 1999; 67:3587–3592.

    PubMed  CAS  Google Scholar 

  102. Jakobsen H, Schulz D, Pizza M et al. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with non-toxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections. Infect Immun 1999; 67:5892–5897.

    PubMed  CAS  Google Scholar 

  103. Malley R, Lipsitch M, Stack A et al. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun 2001; 69:4870–4873.

    PubMed  CAS  Google Scholar 

  104. Paton JC, Morona JK, Harrer S et al. Immunization of mice with Salmonella typhimurium C5 aroA expressing a genetically toxoided derivative of the pneumococcal toxin pneumolysin. Microb Pathogen 1993; 14:95–102.

    CAS  Google Scholar 

  105. Nayak AR, Tinge SA, Tart RC et al. A live recombinant oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect Immun 1998; 66:3744–3751.

    PubMed  CAS  Google Scholar 

  106. Barry EM, Santiago AE, Sampson J et al. Multiple pneumococcal antigens expressed in attenuated S. typhi vaccine strains. Abstract. Third International Symposium on Pneumococci and Pneumococcal Diseases, Anchorage, Alaska, 2002.

    Google Scholar 

  107. Gilbert C, Robinson K, Le Page RW et al. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun 2000; 68:3251–3260.

    PubMed  CAS  Google Scholar 

  108. Paton JC, Morona JK. Streptococcus pneumoniae capsular polysaccharide. In: Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J, eds. Gram-Positive Pathogens. Washington DC: ASM Press, 2000:201–213.

    Google Scholar 

  109. Bosarge JR, Watt JM, McDaniel DO et al. Genetic immunization with the region encoding the alpha-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect Immun 2001; 69:5456–5463.

    PubMed  CAS  Google Scholar 

  110. Miyaji EN, Dias WO, Gamberini M et al. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine 2001; 20:805–812.

    PubMed  CAS  Google Scholar 

  111. Lesinski GB, Smithson SL, Srivastava N et al. A DNA vaccine encoding a peptide mimic of Streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/c mice. Vaccine 2001; 19:1717–1726.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paton, J.C., Briles, D.E. (2003). Streptococcus pneumoniae Vaccines. In: New Bacterial Vaccines. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0053-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0053-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4902-0

  • Online ISBN: 978-1-4615-0053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics