Skip to main content

Bio-Inspired Nanocatalysis

  • Chapter
  • First Online:

Abstract

In response to increasing energy concerns, new materials are required that efficiently use and/or produce energy for a variety of applications. One specific and important area would be for catalytic applications that typically are energy intensive, but extremely important. In this regard, biomimetic methods have recently been studied for such reactivity, where the effects of the biointerface on the catalytic functionality have begun to be examined. This chapter focuses on these materials, typically prepared with peptides and viral templates, for a selection of important catalytic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armor JN (2000) Energy efficiency and the environment—opportunities for catalysis. Appl Catal A 194:3–11

    Google Scholar 

  • Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg Chem 46(6):1884–1894

    Google Scholar 

  • Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem, Int Ed 44(48):7852–7872

    Google Scholar 

  • Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22(23):6310–6318

    Google Scholar 

  • Berner S, Biela S, Ledung G, Gogoll A, Backvall JE, Puglia C, Oscarsson S (2006) Activity boost of a biomimetic oxidation catalyst by immobilization onto a gold surface. J Catal 244(1):86–91

    Google Scholar 

  • Bhandari R, Knecht MR (2012a) Isolation of template effects that control the structure and function of nonspherical. Biotemplated Pd Nanomaterials. Langmuir 28(21):8110–8119

    Google Scholar 

  • Bhandari R, Knecht MR (2012b) Synthesis, characterization, and catalytic application of networked Au nanostructures fabricated using peptide templates. Catal Sci Technol 2(7):1360–1366

    Google Scholar 

  • Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109(9):4183–4206

    Google Scholar 

  • Braunstein P (2004) Functional ligands and complexes for new structures, homogeneous catalysts and nanomaterials. J Organomet Chem 689(24):3953–3967

    Google Scholar 

  • Brinas RP, Hu MH, Qian LP, Lymar ES, Hainfeld JF (2008) Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc 130(3):975–982

    Google Scholar 

  • Carter JD, LaBean TH (2011) Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition. ACS Nano 5(3):2200–2205

    Google Scholar 

  • Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75(1–4):3–15

    Google Scholar 

  • Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 168(1):135–142

    Google Scholar 

  • Chirea M, Freitas A, Vasile BS, Ghitulica C, Pereira CM, Silva F (2011) Gold nanowire networks: synthesis, characterization, and catalytic activity. Langmuir 27(7):3906–3913

    Google Scholar 

  • Chiu CY, Li YJ, Ruan LY, Ye XC, Murray CB, Huang Y (2011) Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat Chem 3(5):393–399

    Google Scholar 

  • Coppage R, Slocik JM, Sethi M, Pacardo DB, Naik RR, Knecht MR (2010) Elucidation of peptide effects that control the activity of nanoparticles. Angew Chem, Int Ed 49(22):3767–3770

    Google Scholar 

  • Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR (2011) Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc 133(32):12346–12349

    Google Scholar 

  • Coppage R, Slocik JM, Briggs BD, Frenkel AI, Naik RR, Knecht MR (2012) Determining peptide sequence effects that control the size, structure, and function of nanoparticles. ACS Nano 6(2):1625–1636

    Google Scholar 

  • Coppage R, Slocik JM, Ramezani-Dakhel H, Bedford NM, Heinz H, Naik RR, Knecht MR (2013) Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles. J Am Chem Soc 135(30):11048–11054

    Google Scholar 

  • Costas M, Chen K, Que L (2000) Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev 200:517–544

    Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Google Scholar 

  • d Darwent B (1970) Bond dissociation energies in simple molecules. Washington: U.S. National Bureau of Standards; for sale by the Supt. of Docs., U.S. Govt. Print. Off.

    Google Scholar 

  • Das SK, Khan MMR, Guha AK, Naskar N (2013) Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. [10.1039/C3GC40310F]. Green Chem

    Google Scholar 

  • Dash P, Dehm NA, Scott RWJ (2008) Bimetallic PdAu nanoparticles as hydrogenation catalysts in imidazolium ionic liquids. J Mol Catal A: Chem 286(1–2):114–119

    Google Scholar 

  • De DD, Englehardt JD, Kalu EE (2000) Electroreduction of nitrate and nitrite ion on a platinum-group-metal catalyst-modified carbon fiber electrode-Chronoamperometry and mechanism studies. J Electrochem Soc 147(12):4573–4579

    Google Scholar 

  • Debecker DP, Faure C, Meyre M-E, Derré A, Gaigneaux EM (2008) A new bio-inspired route to metal-nanoparticle-based heterogeneous catalysts. Small 4(10):1806–1812

    Google Scholar 

  • Diagne C, Idriss H, Kiennemann A (2002) Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catal Commun 3(12):565–571

    Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008a) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Google Scholar 

  • Dickerson MB, Jones SE, Cai Y, Ahmad G, Naik RR, Kroger N, Sandhage KH (2008b) Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem Mater 20(4):1578–1584

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169–192

    Google Scholar 

  • Fang C, Bhattarai N, Sun C, Zhang MQ (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5(14):1637–1641

    Google Scholar 

  • Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51(19):5867–5880

    Google Scholar 

  • Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich T, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133(19):7264–7267

    Google Scholar 

  • Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal, B 56(1–2):9–35

    Google Scholar 

  • Gref R, Couvreur P, Barratt G, Mysiakine E (2003) Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 24(24):4529–4537

    Google Scholar 

  • Guo SJ, Wang EK (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6(3):240–264

    Google Scholar 

  • Guo SJ, Fang YX, Dong SJ, Wang EK (2007) High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: Spongelike AWN core/shell nanomaterial with hollow cavity. J Phys Chem C 111(45):17104–17109

    Google Scholar 

  • Hagiwara H, Kumagae K, Ishihara T (2010) Effects of nitrogen doping on photocatalytic water-splitting activity of Pt/KTa0.92Zr0.08O3 perovskite oxide catalyst. Chem Lett 39(5): 498–499

    Google Scholar 

  • Han JG, Zhao RN, Duan YH (2007) Geometries, stabilities, and growth patterns of the bimetal Mo-2-doped Si-n (n=9-16) clusters: A density functional investigation. J Phys Chem A 111(11):2148–2155

    Google Scholar 

  • Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, Guimaraes CP (2012) M13 Bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjugate Chem 23(7):1478–1487

    Google Scholar 

  • Hou WB, Dehm NA, Scott RWJ (2008) Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J Catal 253(1):22–27

    Google Scholar 

  • Huang J, Jiang T, Gao HX, Han BX, Liu ZM, Wu WZ, Zhao GY (2004) Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angew Chem, Int Ed 43(11):1397–1399

    Google Scholar 

  • Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5(7):1429–1434

    Google Scholar 

  • Hussain I, Graham S, Wang ZX, Tan B, Sherrington DC, Rannard SP, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. J Am Chem Soc 127(47):16398–16399

    Google Scholar 

  • Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Matsumura M (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem, Int Ed 45(42):7063–7066

    Google Scholar 

  • Jakhmola A, Bhandari R, Pacardo DB, Knecht MR (2010) Peptide template effects for the synthesis and catalytic application of Pd nanoparticle networks. J Mater Chem 20(8):1522–1531

    Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model Estimates of CO2 Emissions from Soil in Response to Global Warming. Nature 351(6324):304–306

    Google Scholar 

  • Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks an future atmospheric CO2. Science 284(5413):464–467

    Google Scholar 

  • Kim DH, Lu NS, Ghaffari R, Rogers JA (2012) Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. Npg Asia Materials 4

    Google Scholar 

  • Knecht MR, Wright DW (2003) Functional analysis of the biomimetic silica precipitating activity of the R5 peptide from Cylindrotheca fusiformis. [10.1039/B309074D]. Chem Commun (24):3038–3039

    Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442):1129–1132

    Google Scholar 

  • Kugai J, Velu S, Song CS (2005) Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catal Lett 101(3–4):255–264

    Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445

    Google Scholar 

  • Lang X-Y, Fu H-Y, Hou C, Han G-F, Yang P, Liu Y-B, Jiang Q (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4

    Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Google Scholar 

  • Lee SW, Mao CB, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895

    Google Scholar 

  • Lee SK, Yun DS, Belcher AM (2006) Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules 7(1):14–17

    Google Scholar 

  • Lee AF, Ellis PJ, Fairlamb IJS, Wilson K (2010) Surface catalysed Suzuki-Miyaura cross-coupling by Pd nanoparticles: an operando XAS study. [10.1039/C0DT00412J]. Dalton Trans 39(43):10473-10482

    Google Scholar 

  • Lee Y, Kim J, Yun DS, Nam YS, Shao-Horn Y, Belcher AM (2012) Virus-templated Au and Au-Pt core-shell nanowires and their electrocatalytic activities for fuel cell applications. Energy Environ Sci 5(8):8328–8334

    Google Scholar 

  • Li YJ, Huang Y (2010) Morphology-controlled synthesis of platinum nanocrystals with specific peptides. Adv Mater 22(17):1921

    Google Scholar 

  • Li ZP, Koch H, Dubel S (2003) Mutations in the N-terminus of the major coat protein (pVIII, gp8) of filamentous bacteriophage affect infectivity. J Mol Microbiol Biotechnol 6(1):57–66

    Google Scholar 

  • Lisiecki I (2005) Size, shape, and structural control of metallic nanocrystals. J Phys Chem B 109(25):12231–12244

    Google Scholar 

  • Luckarift HR, Dickerson MB, Sandhage KH, Spain JC (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2(5):640–643

    Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47

    Google Scholar 

  • Manea F, Houillon FB, Pasquato L, Scrimin P (2004) Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem, Int Ed 43(45):6165–6169

    Google Scholar 

  • Mao CB, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217

    Google Scholar 

  • Maye MM, Lou Y, Zhong C-J (2000) Core−Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation. Langmuir 16(19):7520–7523

    Google Scholar 

  • Mejare M, Ljung S, Bulow L (1998) Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11(6):489–494

    Google Scholar 

  • Mery D, Astruc D (2006) Dendritic catalysis: Major concepts and recent progress. Coord Chem Rev 250(15–16):1965–1979

    Google Scholar 

  • Mlynarz P, Valensin D, Kociolek K, Zabrocki J, Olejnik J, Kozlowski H (2002) Impact of the peptide sequence on the coordination abilities of albumin-like tripeptides towards Cu2+, Ni2+ and Zn2+ ions. Potential albumin-like peptide chelators. New J Chem 26(2):264–268

    Google Scholar 

  • Naik RR, Brott LL, Clarson SJ, Stone MO (2002a) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechno 2(1):95–100

    Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002b) Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials 1(3):169–172

    Google Scholar 

  • Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO (2004) Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv Funct Mater 14(1):25–30

    Google Scholar 

  • Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888

    Google Scholar 

  • Nam YS, Shin T, Park H, Magyar AP, Choi K, Fantner G, Belcher AM (2010a) Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J Am Chem Soc 132(5):1462

    Google Scholar 

  • Nam YS, Magyar AP, Lee D, Kim JW, Yun DS, Park H, Belcher AM (2010b) Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotech 5(5):340–344

    Google Scholar 

  • Neltner B, Peddie B, Xu A, Doenlen W, Durand K, Yun DS, Belcher A (2010) Production of hydrogen using nanocrystalline protein-templated catalysts on M13 phage. ACS Nano 4(6):3227–3235

    Google Scholar 

  • Pacardo DB, Knecht MR (2013) Exploring the mechanism of Stille C-C coupling via peptide-capped Pd nanoparticles results in low temperature reagent selectivity. Catal Sci Technol 3(3):745–753

    Google Scholar 

  • Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR (2009) Biomimetic synthesis of Pd nanocatalysts for the stille coupling reaction. ACS Nano 3(5):1288–1296

    Google Scholar 

  • Pacardo DB, Slocik JM, Kirk KC, Naik RR, Knecht MR (2011) Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts. Nanoscale 3(5):2194–2201

    Google Scholar 

  • Pande J, Szewczyk MM, Grover AK (2010) Phage display: Concept, innovations, applications and future. Biotechnol Adv 28(6):849–858

    Google Scholar 

  • Pandey RB, Heinz H, Feng J, Farmer BL, Slocik JM, Drummy LF, Naik RR (2009) Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation. PCCP 11(12):1989–2001

    Google Scholar 

  • Pasquato L, Pengo P, Scrimin P (2005) Nanozymes: functional nanoparticle-based catalysts. Supramol Chem 17(1–2):163–171

    Google Scholar 

  • Pei L, Mori K, Adachi M (2004) Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir 20(18):7837–7843

    Google Scholar 

  • Pengo P, Baltzer L, Pasquato L, Scrimin P (2007) Substrate modulation of the activity of an artificial nanoesterase made of peptide-functionalized gold nanoparticles. Angew Chem, Int Ed 46(3):400–404

    Google Scholar 

  • Petrenko VA (2008) Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opinion on Drug Delivery 5(8):825–836

    Google Scholar 

  • Polleux J, Pinna N, Antonietti M, Hess C, Wild U, Schlogl R, Niederberger M (2005) Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem Eur J 11(12):3541–3551

    Google Scholar 

  • Rana S, Yeh YC, Rotello VM (2010) Engineering the nanoparticle-protein interface: applications and possibilities. Curr Opin Chem Biol 14(6):828–834

    Google Scholar 

  • Rhee CK, Kim BJ, Ham C, Kim YJ, Song K, Kwon K (2009) Size effect of Pt nanoparticle on catalytic activity in oxidation of methanol and formic acid: comparison to Pt(111), Pt(100), and polycrystalline Pt electrodes. Langmuir 25(12):7140–7147

    Google Scholar 

  • Rimola A, Rodríguez-Santiago L, Sodupe M (2006) Cation−π interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and his amino acids in the gas phase. Insights from first-principles calculations. J Phys Chem B 110(47):24189–24199

    Google Scholar 

  • Ruan LY, Chiu CY, Li YJ, Huang Y (2011) Synthesis of platinum single-twinned right bipyramid and {111}-bipyramid through targeted control over both nucleation and growth using specific peptides. Nano Lett 11(7):3040–3046

    Google Scholar 

  • Ruan LY, Ramezani-Dakhel H, Chiu CY, Zhu EB, Li YJ, Heinz H, Huang Y (2013) Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}. Nano Lett 13(2):840–846

    Google Scholar 

  • Samanta B, Yan H, Fischer NO, Shi J, Jerry DJ, Rotello VM (2008) Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J Mater Chem 18(11):1204–1208

    Google Scholar 

  • Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nature Materials 2(9):577–585

    Google Scholar 

  • Sau TK, Murphy CJ (2004a) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649

    Google Scholar 

  • Sau TK, Murphy CJ (2004b) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20(15):6414–6420

    Google Scholar 

  • Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129(50):15477

    Google Scholar 

  • Sheldon RA, Arends IWCE, Ten Brink GJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35(9):774–781

    Google Scholar 

  • Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–189

    Google Scholar 

  • Shodiya T, Schmidt O, Peng W, Hotz N (2013) Novel nano-scale Au/α-Fe2O3 catalyst for the preferential oxidation of CO in biofuel reformate gas. J Catal 300:63–69

    Google Scholar 

  • Sidhaye DS, Kashyap S, Sastry M, Hotha S, Prasad BLV (2005) Gold nanoparticle networks with photoresponsive interparticle spacings. Langmuir 21(17):7979–7984

    Google Scholar 

  • Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18(2):57–63

    Google Scholar 

  • Sidhu SS, Lowman HB, Cunningham BC, Wells JA (2000) Phage display for selection of novel binding peptides. Appl Chimeric Genes Hybrid Proteins Pt C 328:333–363

    Google Scholar 

  • Silvy RP (2003) World refining catalyst market update. Oil Gas-European Magazine 29(2):108–109

    Google Scholar 

  • Sinfelt JH, Via GH, Lytle FW (1980) Structure of Bimetallic Clusters-Extended X-Ray Absorption Fine-Structure (Exafs) Studies of Ru-Cu Clusters. J Chem Phys 72(9):4832–4844

    Google Scholar 

  • Slocik JM, Naik RR (2006) Biologically programmed synthesis of bimetallic nanostructures. Adv Mater 18(15):1988

    Google Scholar 

  • Slocik JM, Govorov AO, Naik RR (2008) Photoactivated biotemplated nanoparticles as an enzyme mimic. Angew Chem, Int Ed 47(29):5335–5339

    Google Scholar 

  • So CR, Tamerler C, Sarikaya M (2009) Adsorption, diffusion, and self-assembly of an engineered gold-binding peptide on Au(111) investigated by atomic force microscopy. Angew Chem, Int Ed 48(28):5174–5177

    Google Scholar 

  • Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials 6(3):241–247

    Google Scholar 

  • Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew Chem, Int Ed 25(6):508–523

    Google Scholar 

  • Stumpf HO, Pei Y, Kahn O, Sletten J, Renard JP (1993) Dimensionality of Mn(Ii)Cu(Ii) bimetallic compounds and design of molecular-based magnets. J Am Chem Soc 115(15):6738–6745

    Google Scholar 

  • Tamerler C, Oren EE, Duman M, Venkatasubramanian E, Sarikaya M (2006) Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir 22(18):7712–7718

    Google Scholar 

  • Temkin ON (2012) Kinetic models of multi-route reactions in homogeneous catalysis with metal complexes (A Review). Kinet Catal 53(3):313–343

    Google Scholar 

  • Vallee A, Humblot V, Pradier CM (2010) Peptide Interactions with Metal and Oxide Surfaces. Acc Chem Res 43(10):1297–1306

    Google Scholar 

  • Voityuk AA (1987) Mechanism of enzymatic catalysis-quantum chemical investigation of models of serine proteases (Brief Review). Mol Biol 21(4):729–733

    Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    Google Scholar 

  • Wang T, Hu X, Dong S (2006) Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy. J Phys Chem B 110(34):16930–16936

    Google Scholar 

  • Wang YG, Shah N, Huffman GP (2004) Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts. Energ Fuel 18(5):1429–1433

    Google Scholar 

  • Wang LY, Park HY, Lim SII, Schadt MJ, Mott D, Luo J, Zhong CJ (2008) Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J Mater Chem 18(23):2629–2635

    Google Scholar 

  • Wang DS, Xie T, Li YD (2009) Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nano Research 2(1):30–46

    Google Scholar 

  • Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Catal A: Chem 198(1–2):317–341

    Google Scholar 

  • Wittrup KD (2001) Protein engineering by cell-surface display. Curr Opin Biotechnol 12(4):395–399

    Google Scholar 

  • Xiao N, Cheng DF, Wang Y, Chen L, Liu XR, Dou SP, Rusckowski M (2011) Identification of a high affinityTAG-72 binding peptide by phage display selection. Cancer Biology & Therapy 11(1):22–31

    Google Scholar 

  • Xu CX, Zhang Y, Wang LQ, Xu LQ, Bian XF, Ma HY, Ding Y (2009) Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem Mater 21(14):3110–3116

    Google Scholar 

  • Zhang DS, Du XJ, Shi LY, Gao RH (2012) Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans 41(48):14455–14475

    Google Scholar 

  • Zhong WW (2009) Nanomaterials in fluorescence-based biosensing. Analytical and Bioanalytical Chemistry 394(1):47–59

    Google Scholar 

  • Zhou B, Hermans S, Somorjai GA, American Chemical Society. Meeting (2004) Nanotechnology in catalysis. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Zhou SH, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for CO-tolerant hydrogen activation: Architectural effects in Au-Pt bimetallic nanocatalysts. Adv Funct Mater 17(16):3099–3104

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Knecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coppage, R., Knecht, M.R. (2014). Bio-Inspired Nanocatalysis. In: Knecht, M., Walsh, T. (eds) Bio-Inspired Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9446-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9446-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9445-4

  • Online ISBN: 978-1-4614-9446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics