Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Plated through hole (PTH) is an age-old process technology, especially in the fabrication of printed circuit boards (PCBs). However, PTH is still employed currently for advanced PCB fabrication. The main differences between the conventional PTHs and the current PTHs are acceptable criteria of process and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, New Jersey

    Google Scholar 

  2. Kanani N (2004) Electroplating—basic principles, processes and practice, 1st edn. Elsevier Ltd., Netherlands

    Google Scholar 

  3. Kobayashi T, Kawasaki J, Mihara K, Honma H (2001) Via-filling using electroplating for build-up PCBs. Electrochim Acta 47:85–89

    Article  CAS  Google Scholar 

  4. Kondo K, Yamakawa N, Tanaka Z, Hayashi K (2003) Copper damascene electrodeposition and additives. J Electroanal Chem 559:137–142

    Article  CAS  Google Scholar 

  5. Lefebvre M, Allardyce G, Seita M, Tsuchida H, Kusaka M, Hayashi S (2003) Copper electroplating technology for microvia filling. Circuit World 29:9–14

    Article  CAS  Google Scholar 

  6. Dow W-P, Huang H-S, Lin Z (2003) Interactions between brightener and chloride ions on copper electroplating for laser-drilled via-hole filling. Electrochem Solid-State Lett 6:C134–C136

    Article  CAS  Google Scholar 

  7. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42:567–574

    Article  CAS  Google Scholar 

  8. Moffat TP, Wheeler D, Huber WH, Josell D (2001) Superconformal electrodeposition of copper. Electrochem Solid-State Lett 4:C26–C29

    Article  CAS  Google Scholar 

  9. West AC, Mayer S, Reid J (2001) A superfilling model that predicts bump formation. Electrochem Solid-State Lett 4:C50–C53

    Article  CAS  Google Scholar 

  10. Moffat TP, Wheeler D, Edelstein MD, Josell D (2005) Superconformal film growth: mechanism and quantification. IBM J Res Dev 49:19–36

    Article  CAS  Google Scholar 

  11. Vereecken PM, Binstead RA, Deligianni H, Andricacos PC (2005) The chemistry of additives in damascene copper plating. IBM J Res Dev 49:3–18

    Article  CAS  Google Scholar 

  12. Dow W-P, Chen H–H, Yen M-Y, Chen W-H, Hsu K-H, Chuang P-Y, Ishizuka H, Sakagawa N, Kimizuka R (2008) Through-hole filling by copper electroplating. J Electrochem Soc 155:D750–D757

    Article  CAS  Google Scholar 

  13. Chen C-H, Lu C-W, Huang S-M, Dow W-P (2011) Effects of supporting electrolytes on copper electroplating for filling through-hole. Electrochim Acta 56:5954–5960

    Article  CAS  Google Scholar 

  14. Dow W-P, Liu D-H, Lu C-W, Chen C-H, Yan J–J, Huang S-M (2011) Through-hole filling by copper electroplating using a single organic additive. Electrochem Solid-State Lett 14:D13–D15

    Article  CAS  Google Scholar 

  15. West AC (2000) Theory of filling of high-aspect ratio trenches and vias in presence of additives. J Electrochem Soc 147:227–232

    Article  CAS  Google Scholar 

  16. Kessler T, Alkire R (1976) A model for copper electroplating of multilayer printed wiring boards. J Electrochem Soc 123:990–999

    Article  CAS  Google Scholar 

  17. Engelmaier W, Kessler T (1978) Investigation of agitation effects on electroplated copper in multilayer board plated-through holes in a forced-flow plating cell. J Electrochem Soc 125:36–43

    Article  CAS  Google Scholar 

  18. Alkire RC, Ju JB (1987) The effect of an impinging fluid jet on mass transfer and current distribution in a circular through-hole. J Electrochem Soc 134:1172–1180

    Article  CAS  Google Scholar 

  19. Yung EK, Romankiw LT, Alkire RC (1989) Plating of copper into through-holes and vias. J Electrochem Soc 136:206–215

    Article  CAS  Google Scholar 

  20. Pesco AM, Cheh HY (1989) The current distribution within plated through-holes: I the effect of electrolyte flow restriction during DC electrolysis. J Electrochem Soc 136:399–407

    Article  CAS  Google Scholar 

  21. Yung EK, Romankiw LT (1989) Fundamental study of acid copper through-hole electroplating process. J Electrochem Soc 136:756–767

    Article  CAS  Google Scholar 

  22. Hazlebeck DA, Talbot JB (1991) Modeling of the electroplating of a through-hole considering additive effects and convection. J Electrochem Soc 138:1985–1997

    Article  CAS  Google Scholar 

  23. Chern JWE, Cheh HY (1996) Modeling of plated through-hole processes: I current distribution. J Electrochem Soc 143:3139–3144

    Article  CAS  Google Scholar 

  24. Chern JWE, Cheh HY (1996) Modeling of plated through-hole processes: II effect of leveling agents on current distribution. J Electrochem Soc 143:3144–3148

    Article  Google Scholar 

  25. Poon GKK, Williams DJ (1998) Modeling of acid copper electroplating: a review. J Electron Manuf 08:15–37

    Article  Google Scholar 

  26. Hazlebeck DA, Talbot JB (1990) Modeling of additive effects on the electroplating of a through-hole. AIChE J 36:1145–1155

    Article  CAS  Google Scholar 

  27. Lanzi O, Landau U (1988) Analysis of mass transport and ohmic limitations in through-hole plating. J Electrochem Soc 135:1922–1930

    Article  CAS  Google Scholar 

  28. Dow W-P, Li C–C, Lin M-W, Su G-W, Huang C–C (2009) Copper fill of microvia using a thiol-modified Cu seed layer and various levelers. J Electrochem Soc 156:D314–D320

    Article  CAS  Google Scholar 

  29. Hai NTM, Wandelt K, Broekmann P (2008) Stable anion–cation layers on Cu(111) under reactive conditions. J Phys Chem C 112:10176–10186

    Article  CAS  Google Scholar 

  30. Hai NTM, Furukawa S, Vosch T, De Feyter S, Broekmann P, Wandelt K (2009) Electrochemical reactions at a porphyrin-copper interface. Phys Chem Chem Phys 11:5422–5430

    Article  CAS  Google Scholar 

  31. Dow W-P, Huang H-S, Yen M-Y, Huang H-C (2005) Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. J Electrochem Soc 152:C425–C434

    Article  CAS  Google Scholar 

  32. Dow W-P, Yen M-Y, Liu C-W, Huang C–C (2008) Enhancement of filling performance of a copper plating formula at low chloride concentration. Electrochim Acta 53:3610–3619

    Article  CAS  Google Scholar 

  33. Takagi K, Honma H, Sasabe T (2003) Development of sequential build-up multilayer printed wiring boards in Japan. Electr Insul Mag IEEE 19:27–56

    Article  Google Scholar 

  34. Sundaram V, Tummala RR, Fuhan L, Kohl PA, Jun L, Bidstrup-Allen SA, Fukuoka Y (2004) Next-generation microvia and global wiring technologies for SOP. IEEE Trans Adv Packag 27:315–325

    Article  CAS  Google Scholar 

  35. Blackshear ED, Cases M, Klink E, Engle SR, Malfatt RS, de Araujo DN, Oggioni S, LaCroix LD, Wakil JA, Pham NH, Hougham GG, Russell DJ (2005) The evolution of build-up package technology and its design challenges. IBM J Res Dev 49:641–661

    Article  Google Scholar 

  36. Topol AW, Tulipe DCL, Shi L, Frank DJ, Bernstein K, Steen SE, Kumar A, Singco GU, Young AM, Guarini KW, Ieong M (2006) Three-dimensional integrated circuits. IBM J Res Dev 50:491–506

    Article  Google Scholar 

  37. Lau JH (2011) Overview and outlook of through-silicon via (TSV) and 3D integrations. Microelectron Int 28:8–22

    Article  CAS  Google Scholar 

  38. Dow W-P, Chen H–H (2004) A novel copper electroplating formula for laser-drilled micro via and through hole filling. Circuit World 30:33–36

    Article  CAS  Google Scholar 

  39. Dow W-P, Lu C-W, Lin J-Y, Hsu F-C (2011) Highly selective Cu electrodeposition for filling through silicon holes. Electrochem Solid-State Lett 14:D63–D67

    Article  CAS  Google Scholar 

  40. Bielski BHJ, Shiue GG, Bajuk S (1980) Reduction of nitro blue tetrazolium by CO -2 and O -2 radicals. J Phys Chem 84:830–833

    Article  CAS  Google Scholar 

  41. Umemoto K, Okamura N (1986) Reaction of hydroxide ion with electron acceptors in dimethyl sulfoxide. Bull Chem Soc Jpn 59:3047–3052

    Article  CAS  Google Scholar 

  42. Umemoto K (1989) Electrochemical studies of the reduction mechanism of tetrazolium salts and formazans. Bull Chem Soc Jpn 62:3783–3789

    Article  CAS  Google Scholar 

  43. Oritani T, Fukuhara N, Okajima T, Kitamura F, Ohsaka T (2004) Electrochemical and spectroscopic studies on electron-transfer reaction between novel water-soluble tetrazolium salts and a superoxide ion. Inorg Chim Acta 357:436–442

    Article  CAS  Google Scholar 

  44. Brooksby PA, Downard AJ (2005) Multilayer nitroazobenzene films covalently attached to carbon. an AFM and electrochemical study. J Phys Chem B 109:8791–8798

    Article  CAS  Google Scholar 

  45. Üstündağ Z, Solak AO (2009) EDTA modified glassy carbon electrode: preparation and characterization. Electrochim Acta 54:6426–6432

    Article  Google Scholar 

  46. Nazemi Z, Shams E, Amini MK (2010) Covalent modification of glassy carbon electrode by nile blue: preparation, electrochemistry and electrocatalysis. Electrochim Acta 55:7246–7253

    Article  CAS  Google Scholar 

  47. Cougnon C, Nguyen NH, Dabos-Seignon S, Mauzeroll J, Bélanger D (2011) Carbon surface derivatization by electrochemical reduction of a diazonium salt in situ produced from the nitro precursor. J Electroanal Chem 661:13–19

    Article  CAS  Google Scholar 

  48. Lu C-W (2010) Development of a new formula for filling through-hole by copper electroplating. In: Chemical Engineering, Master Thesis, National Chung Hsing University, Taiwan

    Google Scholar 

  49. Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J Electrochem Soc 142:L87–L89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ping Dow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dow, WP. (2014). Through Hole Plating. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_11

Download citation

Publish with us

Policies and ethics