Skip to main content

Visually Induced Myopia and Emmetropization

  • Chapter
  • First Online:
Visual Development

Abstract

Myopia is an important problem, affecting over 40 % of the population in the USA and more than 80 % in some parts of Asia, with these percentages increasing over time. The eyeball can grow, but cannot get smaller after it has grown, so the problem has to be tackled early. The signal for emmetropization is generated within the retina, by cells that can detect whether the image is in focus. Which cells do this has not been pinned down. Signals from these cells must then be sent to the choroid, which can expand and retract, and to the sclera to determine the overall size of the eyeball. Some ionic changes which lead to retraction and expansion of the choroid, and movement of fluid into and out of the vitreous have been discovered, but much more remains to be done. Three factors that are changed bidirectionally in response to myopia and reduction of myopia have been discovered. These are glucagon, retinoic acid, and the immediate early gene ZENK. How these factors fit into the complete sequence of events still has to be determined. Current treatments for myopia are not very effective—either optical treatments or pharmacological ones—but more time spent outdoors certainly helps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anstice NS, Phillips JR (2011) Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 118:1152–1161

    Article  PubMed  Google Scholar 

  • Baird PN, Schache M, Dirani M (2010) The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Progr Retin Eye Res 29:520–542

    Article  Google Scholar 

  • Benavente-Perez A, Nour A, Troilo D (2012) The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets. Investig Ophthalmol Vis Sci 53:6479–6487

    Article  Google Scholar 

  • Bitzer M, Feldkamper M, Schaeffel F (2000) Visually induced changes in components of the retinoic acid system in fundal layers of the chick. Exp Eye Res 70:97–106

    Article  PubMed  CAS  Google Scholar 

  • Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, Tan D (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113:2285–2291

    Article  PubMed  Google Scholar 

  • Cottriall CL, McBrien NA (1996) The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew. Investig Ophthalmol Vis Sci 37:1368–1379

    CAS  Google Scholar 

  • Crewther DP (2000) The role of photoreceptors in the control of refractive state. Progr Retin Eye Res 19:421–457

    Article  CAS  Google Scholar 

  • Crewther SG, Liang H, Junghans BM, Crewther DP (2006) Ionic control of ocular growth and refractive change. Proc Natl Acad Sci U S A 103:15663–15668

    Article  PubMed  CAS  Google Scholar 

  • Crewther SG, Murphy MJ, Crewther DP (2008) Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms. PLoS ONE 3:e2839

    Article  PubMed  Google Scholar 

  • Feldkamper MP, Neacsu I, Schaeffel F (2009) Insulin acts as a powerful stimulator of axial myopia in chicks. Investig Ophthalmol Vis Sci 50:13–23

    Article  Google Scholar 

  • Feldkamper M, Schaeffel F (2002) Evidence for a potential role of glucagon during eye growth regulation in chicks. Vis Neurosci 19:755–766

    Google Scholar 

  • Fischer AJ, McGuire JJ, Schaeffel F, Stell WK (1999) Light and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci 2:706–712

    Article  PubMed  CAS  Google Scholar 

  • Fischer AJ, Miethke P, Morgan IG, Stell WK (1998) Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia. Brain Res 794:48–60

    Article  PubMed  CAS  Google Scholar 

  • Fitzke FW, Hayes BP, Hodos W, Holden AL, Low JC (1985) Refractive sectors in the visual field of the pigeon eye. J Physiol 369:33–44

    PubMed  CAS  Google Scholar 

  • Gwiazda JE, Hyman L, Norton TT, Hussein ME, Marsh-Tootle W, Manny R, Wang Y, Everett D (2004) Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Investig Ophthalmol Vis Sci 45:2143–2151

    Article  Google Scholar 

  • Gwiazda J (2009) Treatment options for myopia. Optom Vis Sci 86:624–628

    Article  PubMed  Google Scholar 

  • Hornbeak DM, Young TL (2009) Myopia genetics: a review of current research and emerging trends. Curr Opin Ophthalmol 20:356–362

    Article  PubMed  Google Scholar 

  • Howlett MH, McFadden SA (2009) Spectacle lens compensation in the pigmented guinea pig. Vision Res 49:219–227

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1975) Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. Cold Spring Harb Symp Quant Biol 40:581–589

    Article  Google Scholar 

  • Hung GK, Ciuffreda KJ (2007) Incremental retinal-defocus theory of myopia development–schematic analysis and computer simulation. Comput Biol Med 37:930–946

    Article  PubMed  Google Scholar 

  • Hung LF, Crawford MJ, Smith EL (1994) Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med 1:761–765

    Article  Google Scholar 

  • Irving EL, Sivak JG, Callender MG (1992) Refractive plasticity in the developing chick eye. Ophthalmic Physiol Optic 12:448–456

    Article  CAS  Google Scholar 

  • Johnson CA, Post RB, Chalupa LM, Lee TJ (1982) Monocular deprivation in humans: a study of identical twins. Invest Ophthalmol 23:135–138

    CAS  Google Scholar 

  • Kiorpes L, Wallman J (1995) Does experimentally-induced amblyopia cause hyperopia in monkeys? Vision Res 35:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Lepard CW (1975) Comparative changes in the error of refraction between fixing and amblyopic eyes during growth and development. Am J Ophthalmol 80:485–490

    PubMed  CAS  Google Scholar 

  • Leveziel N, Yu Y, Reynolds R, Tai A, Meng W, Caillaux V, Calvas P, Rosner B, Malecaze F, Souied EH, Seddon JM (2012) Genetic factors for choroidal neovascularization associated with high myopia. Investig Ophthalmol Vis Sci 53:5004–5009

    Article  Google Scholar 

  • Li XX, Schaeffel F, Kohler K, Zrenner E (1992) Dose-dependent effects of 6-hydroxydopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens. Vis Neurosci 9:483–492

    Article  PubMed  CAS  Google Scholar 

  • Luft WA, Ming Y, Stell WK (2003) Variable effects of previously untested muscarinic receptor antagonists on experimental myopia. Investig Ophthalmol Vis Sci 44:1330–1338

    Article  Google Scholar 

  • McBrien NA, Millodot M (1987) The relationship between tonic accommodation and refractive error. Investig Ophthalmol Vis Sci 28:997–1004

    CAS  Google Scholar 

  • McBrien NA, Moghaddam HO, Cottriall CL, Leech EM, Cornell LM (1995) The effects of blockade of retinal cell action potentials on ocular growth, emmetropization and form deprivation myopia in young chicks. Vision Res 35:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • McFadden SA, Howlett MHC, Mertz JR (2004) Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res 44:643–653

    Article  PubMed  CAS  Google Scholar 

  • Mertz JR, Wallman J (2000) Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp Eye Res 70:519–527

    Article  PubMed  CAS  Google Scholar 

  • Nathan J, Kiely PM, Crewther SG, Crewther DP (1985) Disease-associated visual image degradation and spherical refractive errors in children. Am J Optom Physiol Opt 62:680–688

    Article  PubMed  CAS  Google Scholar 

  • Norton TT, Essinger JA, McBrien NA (1994) Lid-suture myopia in tree shrews with retinal ganglion cell blockade. Vis Neurosci 11:143–154

    Article  PubMed  CAS  Google Scholar 

  • Norton TT, Amedo AO, Siegwart JT (2006) Darkness causes myopia in visually experienced tree shrews. Investig Ophthalmol Vis Sci 47:4700–4707

    Article  Google Scholar 

  • Rabin J, Van Sluyters RC, Malach R (1981) Emmetropization: a vision dependent phenomenon. Invest Ophthalmol 20:561–564

    CAS  Google Scholar 

  • Raviola E, Wiesel TN (1985) An animal model of myopia. New Engl J Med 312:1609–1615

    Article  PubMed  CAS  Google Scholar 

  • Ritchey ER, Zelinka CP, Tang J, Liu J, Fischer AJ (2012) The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res 99:1–16

    Article  PubMed  Google Scholar 

  • Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, Mitchell P (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285

    Article  PubMed  Google Scholar 

  • Rucker FJ, Wallman J (2012) Chicks use changes in luminance and chromatic contrast as indicators of the sign of defocus. Journal of vision 12. 6, 23

    Google Scholar 

  • Sankaridurg P, Holden B, Smith E 3rd, Naduvilath T, Chen X, de la Jara PL, Martinez A, Kwan J, Ho A, Frick K, Ge J (2011) Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Investig Ophthalmol Vis Sci 52:9362–9367

    Article  Google Scholar 

  • Saw SM, Katz J, Schein OD, Chew SJ, Chan TK (1996) Epidemiology of myopia. Epidemiol Rev 18:175–187

    Article  PubMed  CAS  Google Scholar 

  • Schaeffel F, Bartmann M, Hagel G, Zrenner E (1995) Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Vision Res 35:1247–1264

    Article  PubMed  CAS  Google Scholar 

  • Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error and eye growth in chickens. Vision Res 28:639–657

    Article  PubMed  CAS  Google Scholar 

  • Schmid KL, Wildsoet CF (2004) Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom Vis Sci 81:137–147

    Article  PubMed  Google Scholar 

  • Seko Y, Shimizu M, Tokoro T (1998) Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res 30:361–367

    Article  PubMed  CAS  Google Scholar 

  • Siatkowski RM, Cotter SA, Crockett RS, Miller JM, Novack GD, Zadnik K (2008) Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS 12:332–339

    Article  PubMed  Google Scholar 

  • Siegwart JT, Norton TT (1998) The susceptible period for deprivation-induced myopia in tree shrew. Vision Res 38:3505–3515

    Article  PubMed  Google Scholar 

  • Smith EL (2011) Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci 88:1029–1044

    Article  PubMed  Google Scholar 

  • Smith EL, Hung LF, Harwerth RS (1994) Effects of optically induced blur on the refractive status of young monkeys. Vision Res 34:293–301

    Article  PubMed  Google Scholar 

  • Smith EL, Hung LF, Huang J (2012) Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig Ophthalmol Vis Sci 53:421–428

    Article  Google Scholar 

  • Smith EL, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, Coats D, Paysse E (2007) Effects of foveal ablation on emmetropization and form-deprivation myopia. Investig Ophthalmol Vis Sci 48:3914–3922

    Article  Google Scholar 

  • Stone RA, Lin T, Laties AM, Iuvone PM (1989) Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci U S A 86:704–706

    Article  PubMed  CAS  Google Scholar 

  • Troilo D (1990) Experimental studies of emmetropization in the chick. In: Bock GR, Widdows K (eds) Myopia and the control of eye growth, vol 155. Wiley, Chichester, pp 89–102

    Google Scholar 

  • Troilo D, Gottlieb MD, Wallman J (1987) Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res 6:993–999

    Article  PubMed  CAS  Google Scholar 

  • Troilo D, Nickla DL, Wildsoet CF (2000) Form deprivation myopia in mature common marmosets (Callithrix jacchus). Investig Ophthalmol Vis Sci 41:2043–2049

    CAS  Google Scholar 

  • Troilo D, Nickla DL, Mertz JR, Summers Rada JA (2006) Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. Investig Ophthalmol Vis Sci 47:1768–1777

    Article  Google Scholar 

  • Troilo D, Totonelly K, Harb E (2009) Imposed anisometropia, accommodation, and regulation of refractive state. Optom Vis Sci 86:E31–E39

    Article  PubMed  Google Scholar 

  • Vessey KA, Lences KA, Rushforth DA, Hruby VJ, Stell WK (2005) Glucagon receptor agonists and antagonists affect the growth of the chick eye: a role for glucagonic regulation of emmetropization? Investig Ophthalmol Vis Sci 46:3922–3931

    Article  Google Scholar 

  • Vessey KA, Rushforth DA, Stell WK (2004) Glucagon and secretin-related peptides differentially alter ocular growth and the development of form-deprivation myopia in chicks. Investig Ophthalmol Vis Sci 46:3932–3942

    Article  Google Scholar 

  • Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA (1987) Local retinal regions control local eye growth and myopia. Science 237:73–77

    Article  PubMed  CAS  Google Scholar 

  • Wallman J, Wildsoet CF, Xu A, Gottlieb MD, Nickla DL, Marran L, Krebs W, Christensen AM (1995) Moving the retina: choroidal modulation of refractive state. Vision Res 35:37–50

    Article  PubMed  CAS  Google Scholar 

  • Wallman J, Winawer J (2005) Homeostasis of eye growth and the question of myopia. Neuron 43:447–468

    Article  Google Scholar 

  • Wiesel TN, Raviola E (1977) Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature 266:66–68

    Article  PubMed  CAS  Google Scholar 

  • Wildsoet CF, Howland HS, Falconer S, Dick K (1993) Chromatic aberration and accommodation: their role in emmetropization in the chick. Vision Res 33:1593–1603

    Article  PubMed  CAS  Google Scholar 

  • Wildsoet CF, Pettigrew JD (1988) Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth. Clin Vis Sci 3:99–107

    Google Scholar 

  • Wildsoet CF, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski R (2011) Nature and nurture: the complex genetics of myopia and refractive error. Clin Genet 79:301–320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (2014). Visually Induced Myopia and Emmetropization. In: Visual Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9059-3_13

Download citation

Publish with us

Policies and ethics