Skip to main content

Poloxamers as Drug-Delivery Systems: Physicochemical, Pharmaceutical, and Toxicological Aspects

  • Chapter
  • First Online:

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Poloxamers (PL) are copolymers A-B-A type consisting of ethylene oxide (EO) and propylene oxide (PO) units in a triblock EOx–POy–EOx arrangement. These copolymers are interesting due to their ability for temperature-dependent gel formation, as a result of their self-assembling in micelles. Several studies have demonstrated the application of the thermoreversible copolymers as drug-delivery systems in order to prolong the drug release, to sustain the effectiveness, and also to reduce local and/or systemic toxicity, connecting the expertise of different research fields such as Biochemistry, Nanotechnology, Biopharmaceutics, Pharmacology, and Toxicology. Then, the purpose of this chapter involves a discussion about PL copolymers in the light of those research fields.

The development of one-type or binary PL carriers systems is a function of composition (type of copolymer, differences on EO/PO units number, molecular weight), physicochemical properties (hydrophilic-lipophilic balance, cloud point, critical micellar concentration), and structural parameters such as micellar size, temperature for micelles, and hydrogels assembling. Besides, for focusing on how PL can be useful to achieve sustained drug release it is necessary to consider their pharmacological properties (such as the ability to inhibit the P-glycoprotein), in vitro (cytotoxicity or cytoprotection and their mechanisms) and in vivo toxicological evaluation (biocompatibility and regulatory aspects).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Sasaki M, Nakajima H et al (1990) Evaluation of Pluronic F127 as a base for gradual release of anticancer drug. Gan To Kagaku Ryoho 17:1546–1550

    PubMed  CAS  Google Scholar 

  • Alakhova DY, Rapoport NY, Batrakova EV et al (2010) Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 142:89–100

    Article  PubMed  CAS  Google Scholar 

  • Alexandridis P (1994) Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10:2604–2612

    Article  CAS  Google Scholar 

  • Alexandridis P, Hatton AT (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloid Surf A: Physicochem Eng Aspects 96:1–46

    Article  CAS  Google Scholar 

  • Alvarez-Lorenzo C, Sosnik A, Concheiro A (2011) PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr Drug Targets 12:1112–1130

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Seth K, Kalra N et al (2005) Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol Appl Pharmacol 202:237–243

    Article  PubMed  CAS  Google Scholar 

  • Artzner F, Geiger S, Olivier A et al (2007) Interactions between poloxamers in aqueous solutions: micellization and gelation studied by differential scanning calorimetry, small angle X-ray scattering, and rheology. Langmuir 23:5085–5092

    Article  PubMed  CAS  Google Scholar 

  • Balayssac D, Authier N, Cayre A et al (2005) Does inhibition of P-glycoprotein lead to drug-drug interactions? Toxicol Lett 156:319–329

    Article  PubMed  CAS  Google Scholar 

  • Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106

    Article  PubMed  CAS  Google Scholar 

  • Batrakova EV, Li S, Brynskikh AM et al (2010) Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release 143:290–301

    Article  PubMed  CAS  Google Scholar 

  • Blonder JM, Baird L, Fulfs JC, Rosenthal GJ (1999) Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sci 65:261–266

    Article  Google Scholar 

  • Campese GM, Rodrigues EMG, Tambourgi EB et al (2003) Determination of cloud-point temperatures for different copolymers. Braz J Chem Eng 20:335–337

    Article  CAS  Google Scholar 

  • Chaibundit C, Ricardo NMPS, Costa FLL et al (2007) Effect of ethanol on the micellization and gelation of pluronic P123. Langmuir 23:9229–9236

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Wang J, Kausik R et al (2012) Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules 13:2624–2633

    Article  PubMed  CAS  Google Scholar 

  • Chieng YY, Chen SB (2009) Interaction and complexation of phospholipid vesicles and triblock copolymers. J Phys Chem 113:14934–14942

    CAS  Google Scholar 

  • Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684

    Article  PubMed  CAS  Google Scholar 

  • Demina T, Grozdova I, Krylova O et al (2005) Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Biochemistry 44:4042–4054

    Article  PubMed  CAS  Google Scholar 

  • Dumortier G, Grossiord JL, Agnely F et al (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23:2709–2728

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Chávez JJ, López-Cervantes M, Naïk A et al (2006) Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9:339–358

    PubMed  Google Scholar 

  • Fu D, Arias IM (2012) Intracellular trafficking of P-glycoprotein. Int J Biochem Cell Biol 44:461–464

    Article  PubMed  CAS  Google Scholar 

  • Fusco S, Borzacchiello A, Netti PA (2006) Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym 21:149–164

    Article  CAS  Google Scholar 

  • Gaspar R, Ducan R (2009) Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 61:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Gaumet M, Vargas A, Gurny R et al (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Chen M, Zheng Y et al (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159:312–323

    Article  PubMed  CAS  Google Scholar 

  • Greenebaum B, Blossfield K, Hannig J et al (2004) Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. Burns 30:539–547

    Article  PubMed  Google Scholar 

  • Guzmán M, García FF, Molpeceres J et al (1992) Polyoxyethylene-polyoxypropylene block copolymer gels as sustained release vehicles for subcutaneous drug administration. Int J Pharm 80:119–127

    Article  Google Scholar 

  • Han M, Diao Y, Jiang H et al (2011) Molecular mechanism study of chemosensitization of doxorubicin-resistant human myelogenous leukemia cells induced by a composite polymer micelle. Int J Pharm 420:404–411

    Article  PubMed  CAS  Google Scholar 

  • Harrison WJ, Aboulgassem GJ, Elathrem FAI et al (2005) Regression of poloxamer 407-induced atherosclerotic lesions in C57BL/6 mice using atorvastatin. Langmuir 21:6170–6178

    Article  PubMed  CAS  Google Scholar 

  • Higuchi A, Aoki N, Yamamoto T et al (2006) Bioinert surface of pluronic-immobilized flask for preservation of hematopoietic stem cells. Biomacromolecules 7:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Yu J, Li Y et al (2012) Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J Biomed Mater Res A 100:141–188

    PubMed  Google Scholar 

  • Hvidt S, Trandum C, Batsberg W (2002) Effects of poloxamer polydispersity on micellization in water. J Colloid Interface Sci 250:243–250

    Article  PubMed  CAS  Google Scholar 

  • Ieiri I (2012) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) (2012). Drug Metab Pharmacokinet 27:85–105

    Article  PubMed  CAS  Google Scholar 

  • Ivanova R, Lindman B, Alexandridis P (2002) Effect of pharmaceutically acceptable glycols on the stability of the liquid crystalline gels formed by poloxamer 407 in water. J Colloid Interface Sci 252:226–235

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Li C, Lombardi C et al (2008) The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer 49:3561–3567

    Article  CAS  Google Scholar 

  • Johnston TP, Miller SC (1985) Toxicological evaluation of poloxamer vehicles for intra-muscular use. J Parenter Sci Technol 39:83–88

    PubMed  CAS  Google Scholar 

  • Johnston TP, Miller SC (1989) Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix. J Parenter Sci Technol 43:279–286

    PubMed  CAS  Google Scholar 

  • Johnston TP, Baker JC, Hall D et al (2000) Regression of poloxamer 407-induced atherosclerosis lesions in C57BL/6 mice using atorvastatin. Atherosclerosis 149:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2002a) Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54:759–779

    Article  PubMed  CAS  Google Scholar 

  • Kabanov A, Batrakova E, Alakhov VY (2002b) Pluronic® copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    Article  PubMed  CAS  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov VY (2003) An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers. J Control Release 91:75–83

    Article  PubMed  CAS  Google Scholar 

  • Kadam Y, Yerramilli U, Bahadur A et al (2010) Micelles from PEO-PPO-PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf B Biointerfaces 83:49–57

    Article  PubMed  Google Scholar 

  • Kidowaki M, Zhao C, Kataoka T et al (2006) Thermoreversible sol–gel transition of an aqueous solution of polyrotaxane composed of highly methylated α-cyclodextrin and polyethylene glycol. Chem Commun (Camb) 39:4102–4103

    Article  Google Scholar 

  • Klouda L, Mikos AG (2008) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. Eur J Pharm Biopharm 68:34–45

    Article  PubMed  CAS  Google Scholar 

  • Kozlov MY, Melik-Nubarov NS, Batrakova E et al (2000) Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33:3305–3313

    Article  CAS  Google Scholar 

  • Li C, Palmer WK, Johnston TP (1996) Disposition of poloxamer 407 in rats following a single intraperitoneal injection assessed using a simplified colorimetric assay. J Pharm Biomed Anal 14:659–666

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li P, Zhang Y et al (2010) Novel mixed polymeric micelles for enhancing delivery of anticancer drug and overcoming multidrug resistance in tumor cell lines simultaneously. Pharm Res 27:1498–1511

    Article  PubMed  Google Scholar 

  • Liu T, Chu B (2000) Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: FCC to BCC phase transition. J Appl Cryst 33:727–730

    Article  CAS  Google Scholar 

  • Luo C, Chen X, Li Q et al (2013) Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma 30(7):597–607. doi:10.1089/neu.2012.2425

    Article  PubMed  Google Scholar 

  • Mata JP, Majhi PR, Guo C et al (2005) Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J Colloid Interface Sci 292:548–556

    Article  PubMed  CAS  Google Scholar 

  • McDevit CA, Callaghan R (2007) How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther 113:429–441

    Article  Google Scholar 

  • Minko T, Batrakova EV, Li S et al (2005) Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release 105:269–278

    Article  PubMed  CAS  Google Scholar 

  • Mitchard NM, Beezer AE, Mitchell JC et al (1992) Thermodynamic analysis of scanning calorimetric transitions observed for dilute aqueous solutions of ABA block copolymers. J Phys Chem 96:9507–9512

    Article  CAS  Google Scholar 

  • Montesinos RN, Béduneau A, Pellequer Y et al (2012) Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release 161:50–61

    Article  Google Scholar 

  • Mora-Huertas C, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Article  PubMed  CAS  Google Scholar 

  • Mortensen K, Batsberg W, Hvidt S (2008) Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127. Macromolecules 41:1720–1727

    Article  CAS  Google Scholar 

  • Nagarajan R (1999) Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO–PPO–PEO) block copolymers. Colloids Surf B Biointerfaces 16:55–72

    Article  CAS  Google Scholar 

  • Nambam J, Philip J (2012) Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO–PPO–PEO triblock copolymer in aqueous solution. J Phys Chem B 116:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Newby GE, Hamley IW, King SM et al (2009) Structure, rheology and shear alignment of Pluronic block copolymer mixtures. J Colloid Interface Sci 329:54–61

    Article  PubMed  CAS  Google Scholar 

  • Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release 94:411–422

    Article  PubMed  CAS  Google Scholar 

  • Overstreet DJ, Huynh R, Jarbo K et al (2013) In situ forming, resorbable graft copolymer hydrogels providing controlled drug release. J Biomed Mater Res A 101(5):1437–1446. doi:10.1002/jbm.a.34443

    PubMed  Google Scholar 

  • Pandit NK, Wang D (1998) Salt effects on the diffusion and release rate of propranolol from poloxamer 407 gels. Int J Pharm 167:183–189

    Article  CAS  Google Scholar 

  • Parmar A, Singh K, Bahadur A et al (2011) Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Colloids Surf B Biointerfaces 86:319–326

    Article  PubMed  CAS  Google Scholar 

  • Pec EA, Wout ZG, Johnston TP (1992) Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J Pharm Sci 81:626–630

    Article  PubMed  CAS  Google Scholar 

  • Quadir A (2005) Characterization of newly developed micronized poloxamers for poorly soluble drugs. Basf Pharma Solutions, Miami

    Google Scholar 

  • Schmolka IR (1972) Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns. J Biomed Mater Res 6:571–582

    Article  PubMed  CAS  Google Scholar 

  • Sharma PK, Reilly MJ, Bhatia SK et al (2008) Effect of pharmaceuticals on thermoreversible gelation of PEO-PPO-PEO copolymers. Colloids Surf B Biointerfaces 63:229–235

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Yin Q, Chen L et al (2012) Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 33:8613–8624

    Article  PubMed  CAS  Google Scholar 

  • Singh-Joy SD, McLain VC (2008) Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. Int J Toxicol 27:93–128

    Article  PubMed  Google Scholar 

  • Su Y, Wang J, Liu H (2002) Melt, hydration, and micellization of the PEO–PPO–PEO block copolymer studied by FTIR spectroscopy. J Colloid Interface Sci 251:417–423

    Article  PubMed  CAS  Google Scholar 

  • Vadnere M, Amidon G, Lindebaum S et al (1984) Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int J Pharm 22:207–218

    Article  CAS  Google Scholar 

  • Wang J, Chin J, Marks JD et al (2010) Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress. Langmuir 26:12953–12961

    Article  PubMed  CAS  Google Scholar 

  • Weinand C, Pomerantseva I, Neville C et al (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Liu T, Chu B (1997) Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 30:4574–4583

    Article  CAS  Google Scholar 

  • Yapar EA, Inal O (2012) Poly(ethylene oxide)–poly(propylene oxide)-based copolymers for transdermal drug delivery: an overview. Trop J Pharmaceut Res 11:855–866

    CAS  Google Scholar 

  • Yuhua S, Ligen L, Jiake C et al (2012) Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns 38:95–101

    Article  PubMed  Google Scholar 

  • Zhang Y, Lam YM (2006) Study of mixed micelles and interaction parameters for polymeric nonionic and normal surfactants. J Nanosci Nanotechnol 6:3877–3881

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lam Y, Tan W (2005) Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)-g-poly (vinylpyrrolidone): association behavior in aqueous solution and interaction with anionic surfactants. J Colloid Interface Sci 285:74–79

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Du J, Duan Y et al (2012) Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 97:101–108

    Article  PubMed  CAS  Google Scholar 

  • Zhirnov AE, Demina TV, Krylova OO et al (2005) Lipid composition determines interaction of liposome membranes with Pluronic L61. Biochim Biophys Acta 1720:73–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele R. de Araújo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Araújo, D.R., Oshiro, A., da Silva, D.C., Akkari, A.C.S., de Mello, J.C., Rodrigues, T. (2014). Poloxamers as Drug-Delivery Systems: Physicochemical, Pharmaceutical, and Toxicological Aspects. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_13

Download citation

Publish with us

Policies and ethics