Skip to main content

Role of Silicon in Enrichment of Plant Nutrients and Protection from Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Silicon is the second most abundant element of the Earth’s crust and is regarded as mineral substrate for the growth and development of most plants. Many plants complete their life cycle without the need of silicon, but in majority of food crops like rice, wheat, sugarcane, barley etc, it is abundantly present in and between the plant cells and plays various advantageous roles in the survival. It accumulates in plants through the roots in the form of mono-silicic acid, and thereafter it gets deposited in different types of plant cells and intercellular spaces which are called as phytoliths. Plants generally contain a considerable amount of Si concentration which varies in the ranges of 1–10 % of dry weight or, sometimes, more. Silicon plays important roles in mitigating the biotic (insects, pests, pathogens) and abiotic (metal, salinity, drought, chilling, freezing) stresses. However, in spite of its several beneficial roles in plants, it is not yet considered as an essential mineral element for plants. Besides the significant role of silicon in alleviation of biotic and abiotic stresses, its exact mechanism is still unclear. Nowadays, UV-B radiation stress has become a global concern due to its damaging effect on plants, and it has been shown that silicon also plays an advantageous role against the radiation stress. This chapter aims to cover all the aspects regarding the valuable performance of silicon in the survival of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharyya SK, Lahiri S, Raymahashay BC, Bhowmik A (2000) Arsenic toxicity of ground water in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ Geol 39:1127–1137

    CAS  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.) monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Google Scholar 

  • Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci 85:43–50

    CAS  Google Scholar 

  • Ahmed M, Hassen F, Khurshid Y (2011a) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricult Water Manag 98:1808–1812

    Google Scholar 

  • Ahmed M, Hassen FU, Qadeer U, Aslam MA (2011b) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607

    Google Scholar 

  • Al-Aghabary K, Zhu Z, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–44

    CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plantarum 100:224–233

    CAS  Google Scholar 

  • Anderson DL, Sosa OJ (2001) Effect of silicon on expression of resistance to sugarcane borer (Diatraea saccharalis). J Ame Soci Sug Technol 21:43–50

    Google Scholar 

  • Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389–394

    CAS  Google Scholar 

  • Barcelo J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L.ssp. Mexicana). Plant Soil 154:249–255

    CAS  Google Scholar 

  • Baylis AD, Gragopoulou C, Davidson KJ, Birchall JD (1994) Effect of silicon on the toxicity of aluminium to soybean. Commun Soil Sci Plan 25:537–546

    CAS  Google Scholar 

  • Belanger RB, Bowen PA, Ehret DL, Menzies JG (1995) Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336

    Google Scholar 

  • Bockhaven JV, Vleesschauwer DD, Höfte M (2012) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293

    PubMed  Google Scholar 

  • Bowen P, Menzies J, Ehret D, Samuels L, Glass ADM (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912

    CAS  Google Scholar 

  • Bradbury M, Ahmad R (1990) The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil 125:71–74

    CAS  Google Scholar 

  • Broadhurst CL, Bauchan GR, Murphy CA, Tang YT, Pooley C, Davis AP, Chaney RL (2013) Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. Environ Exp Bot 87:1–9

    CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JA, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese and calcium in alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    PubMed  CAS  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230

    PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrient research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    CAS  Google Scholar 

  • Carver TLW, Robbins MP, Thomas BJ, Troth K, Raistrick N, Zeyen RJ (1998) Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis. Physiol Mol Plant Pathol 52:245–57

    CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Guatierrez-Corrora F, Loza-Tavera M, Torres-Guzman JC, Moreno-Sánchezb R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    PubMed  CAS  Google Scholar 

  • Chauhan DK, Tripathi DK, Rai NK, Rai AK (2011) Detection of Biogenic Silica in Leaf blade, Leaf sheath and Stem of Cynodon dactylon Using LIBS and Phytolith Analysis. Food Biophys 6:416–423

    Google Scholar 

  • Chérif M, Asselin A, Bélanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Google Scholar 

  • Cherif M, Benhamou N, Menzies JG, Belanger RR (1992) Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol Mol Plant Pathol 41:411–425

    CAS  Google Scholar 

  • Cherif M, Menzies JG, Ehret DL, Bogdanoff C, Belanger RR (1994) Yield of cucumber infected with Pythium aphanidermatum when grown in soluble silicon. Horticult Sci 29(8):896–897

    Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    PubMed  CAS  Google Scholar 

  • Correia CM, Torres-Pereira MS, Torres-Pereira JMG (1999) Growth, photosynthesis and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B radiation. Environ Pollut 104:383–388

    CAS  Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci 162:939–945

    CAS  Google Scholar 

  • Coulibaly K (1990) Influence of nitrogen and silicon fertilization on the attack on sugarcane by the stalk borer (Eldana saccharina Walker). Sugarcane Spring Supplement 18. cucumber roots infected by Pythium spp. Phytopathology 84:236–242

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    CAS  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–31

    CAS  Google Scholar 

  • Elawad SH, Green VEJ (1979) Silicon and the rice plant environment: a review of recent research. Il Riso 28:235–253

    CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    PubMed  CAS  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    PubMed  CAS  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    CAS  Google Scholar 

  • Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC, Chen T, Lin WX (2011) Suppression and over expression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10

    CAS  Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    PubMed  CAS  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Bélanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Biochem Cell Biol 88:396–401

    CAS  Google Scholar 

  • Fawe A, Menzies JG, Cherif M, Belanger RR (2001) Silicon and disease resistance in dicotyledons. In: Datnoff LE, Snyder GH, Korndo¨rfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam

    Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberinization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    PubMed  CAS  Google Scholar 

  • Galvez L, Clark RB, Gourley LM, Maranville JW (1987) Silicon interactions with manganese and aluminum toxicity in sorghum. J Plant Nutr 10:1139–1147

    CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27(8):1457–1470

    CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    CAS  Google Scholar 

  • Ghanmi D, McNally DJ, Benhamou N, Menzies JG, Belanger RR (2004) Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiol Mol Plant P 64:189–199

    CAS  Google Scholar 

  • Gong H, Chen K, Chen G, Wang S, Zhang C (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Gotoa M, Eharaa H, Shyuichi K, Keiji T, Natsumi O, Yutaka Y, Satoru O, Sani YM, Osamu M (2003) Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Sci 164:349–356

    Google Scholar 

  • Gottardi S, Iacuzzoa F, Tomasi N, Cortella G, Manzoccoc L, Pintona R, Römheldd V, Mimmoe T, Scampicchioe M, Costaa LD, Cesco S (2012) Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiol Bioch 56:14–23

    CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Google Scholar 

  • Hammond KE, Evans DE, Hodson MJ (1995) Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil 173:89–95

    CAS  Google Scholar 

  • Hassan MJ, Zhang G, Wu F, Wei K, Chen Z (2005) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168:255–261

    CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxova´ M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    CAS  Google Scholar 

  • Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eneji AE, Morita S (2007) Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ Exp Bot 60:177–182

    CAS  Google Scholar 

  • Hoffmann H, Schenk MK (2011) Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo. Environ Pollut 159:2398–2404

    PubMed  CAS  Google Scholar 

  • Huang YZ, Zhang WQ, Zhao LJ (2012) Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1. Chem Ecol 28(4):341–354

    CAS  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238:281–288

    CAS  Google Scholar 

  • Jones L, Handreck K (1967) Silica in soils, plants, and animals. Adv Agron 19(2):107–149

    CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop response to ultraviolet-B radiation: a review. Agric Forest Meteorol 120:191–218

    Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    CAS  Google Scholar 

  • Kiirika LM, Stahl F, Wydra K (2013) Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiol Mol Plant P 81:1–12

    CAS  Google Scholar 

  • Kolbert ZS, Pető A, Lehotai N, Feigl G, Erdei L (2012) Long-term copper(Cu2+) Exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regul. doi:10.1007/s10725-012-9701-7

  • Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289–296

    Google Scholar 

  • Liang YC, Ding RX (2002) Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China (Series C) 45:298–308

    CAS  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang W, Ding R (2003) Effects of silicon on salinity tolerance of two barley genotypes. J Plant Physiol 160:1157–1164

    PubMed  CAS  Google Scholar 

  • Liang YC, Shen QR, Shen ZG, Ma TS (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173–183

    CAS  Google Scholar 

  • Liang YC, Zhang WH, Chen Q, Ding RX (2005) Effects of silicon on tonoplast Hþ -ATPase and Hþ-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    CAS  Google Scholar 

  • Liang Y, Zhang W, Qin C, Youliang L, Ruixing D (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219

    CAS  Google Scholar 

  • Liu J, Zhang H, Zhanga Y, Chai T (2013) Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiol Bioch 68:1–7

    CAS  Google Scholar 

  • Lopez CML, Takahashi H, Yamazaki S (2002) Plant-water relations of kidney bean plants treated with NaCl and foliarly applied glycinebetaine. J Agron Crop Sci 188:73–80

    CAS  Google Scholar 

  • Lukacova Z, Svubova R, Kohanova J, Lux A (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Soil. doi:10.1007/s10725-012-9781-4

    Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    PubMed  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    CAS  Google Scholar 

  • Marschner H (1999) Mineral nutrition of higher plants. Academic, London, 889

    Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photo assimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    PubMed  CAS  Google Scholar 

  • Marschner II (1995) Beneficial mineral elements. Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2006) Blackwell Publishing Ltd Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603

    PubMed  Google Scholar 

  • Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304

    CAS  Google Scholar 

  • Maxwel FG, Jenkins N, Parrott WL (1977) Resistance of plants to insects. Adv Agron 24:187–265

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species: Tansley Review. New Phytol 154:29–43

    CAS  Google Scholar 

  • Menzies JG, Ehret DL, Glass ADM, Helmer T, Koch C, Seywerd F (1991) The effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus. Phytopathology 81:84–8

    Google Scholar 

  • Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973

    PubMed  CAS  Google Scholar 

  • Milton NM, Ager CM, Eiswerth BA, Powers MS (1989) Arsenic and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sens Environ 30(3): 263–269

    Google Scholar 

  • Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Maroof Shah M, Muhammad Azim R (2010) Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol 101:5815–5819

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Moharana PC, Sharma BM, Biswas DR, Dwivedi BS, Singh RV (2012) Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year old pearl millet-wheat cropping system in an Inceptisol of subtropical India. Field Crop Res 136:32–41

    Google Scholar 

  • Monakhova OF, Chernyadev II (2002) Protective role of kartolin-4 in wheat plants exposed to soil drought. Appl Biochem Micro 38:373–380

    CAS  Google Scholar 

  • Morgan PW, Taylor DM, Joham HE (1976) Manipulations of IAA oxidase activity and auxin deficiency symptoms in intact cotton plants with manganese nutrition. Physiol Plantarum 37:149–156

    CAS  Google Scholar 

  • Naranjo EM, Morenoa LA, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Bioch 63:115–121

    Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    PubMed  CAS  Google Scholar 

  • Neumann D, zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    PubMed  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and of nitrogen nutrition on photosynthesis in Cd treated sunflower plants. Ann Bot London 86:841–847

    Google Scholar 

  • Ormaetxe II, Escuredo PR, Igor C, Arrese BM (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181

    Google Scholar 

  • Ortega L, Fry SC, Taleisnik E (2006) Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. J Exp Bot 57:3945–3952

    PubMed  CAS  Google Scholar 

  • Ota M, Kobayshi H, Kawaguchi Y (1975) Effect of slag on paddy rice part 2. Influence of different nitrogen and slag levels on growth and composition of rice plant. Soil Plant Food 3:104–107

    Google Scholar 

  • Pandey M, Dixit VK, Katiyar GP, Nath G, Sundram SM, Chandra N, Shomvansi AK, Kar S, Upadhay VK (2005) Ganga water pollution and occurrence of enteric diseases in Varanasi city. Ind J Commun Med 30(4):115–120

    Google Scholar 

  • Pankovic D, Plesnicar M, Maksimoviic IA, Petrovic N, Sakac Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot-London 86(4):841–847

    CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    CAS  Google Scholar 

  • Peng Q, Zhou Q (2010) Effects of enhanced UV-B radiation on the distribution of mineral elements in soybean (Glycine max) seedlings. Chemosphere 78:859–863

    PubMed  CAS  Google Scholar 

  • Piperno DR (2006) Phytoliths. A comprehensive guide for archaeologists and paleoecologists. AltaMira Press (Rowman & Littlefield), Oxford. doi:10.1017/S0016756807003159

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    PubMed  CAS  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant P 66:108–15

    Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    CAS  Google Scholar 

  • Riquelme A, Wellmann E, Pinto M (2007) Effects of ultraviolet-B radiation on common bean (Phaseolus vulgaris) two grass weeds in relation to changes in herbicide absorption and photosynthesis. Weed Res 47:122–128

    Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2005) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    PubMed  Google Scholar 

  • Ryder M, Gerard F, Evans DE, Hodson MJ (2003) The use of root growth and modeling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. J Inorg Biochem 97:52–58

    PubMed  CAS  Google Scholar 

  • Sanchez AI, Rodrıguez GJM, Garcıa R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S -adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285

    Google Scholar 

  • Sangakkara UR, Frehner M, Nosberger J (2001) Influence of soil moisture and fertilizer potassium on the vegetative growth of mungbean (Vigna radiata L. Wilczek) and cowpea (Vigna unguiculata L. Walp). J Agron Crop Sci 186:73–81

    Google Scholar 

  • Sarwar N, Saifullah SSM, Munir HZ, Asif N, Sadia B, Ghulam F (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agr 90:925–937

    CAS  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999a) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903

    CAS  Google Scholar 

  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adj Agron 58:151–199

    CAS  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999b) Silicon nutrition and production. J Plant Nutr 22:1853–1903

    CAS  Google Scholar 

  • Sawant AS, Patil VH, Savant NK (1994) Rice hull ash applied to seebold reduces dead hearts in transplanted rice. Int Rice Res Notes 19(4):21–22

    Google Scholar 

  • Shah BA (2010) Arsenic-contaminated groundwater in Holocene sediments from parts of middle Ganga plain, Uttar Pradesh, India. Curr Sci 98:1359–1365

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants -a review. Environ Int 31:739–753

    PubMed  CAS  Google Scholar 

  • Shen XF, Li JM, Duan LS, Li ZH, Eneji AE (2009) Nutrient acquisition by soybean treated with and without silicon under ultraviolet-B radiation. J Plant Nutr 32:1731–43

    CAS  Google Scholar 

  • Shen XF, Zhou YY, Duan LS, Li ZH, Eneji AE, Li JM (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    PubMed  CAS  Google Scholar 

  • Shettya R, Jensena B, Shettya NP, Hansena M, Hansenb CW, Starkeyb KR, Jørgensen HJL (2012) Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathol 61:120–131

    Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101:8827–8832

    PubMed  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011a) Heavy metal and living systems: an overview. Ind J Pharmacol 43(3):246–253

    CAS  Google Scholar 

  • Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011b) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274

    PubMed  CAS  Google Scholar 

  • Soares JDR, Pasqual M, de Araujo AG, de Castro EM, Pereira FJ, Braga FT (2012) Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Sci Agronomy 34:413–421

    CAS  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74–83

    PubMed  CAS  Google Scholar 

  • Sujatha G, Reddy GP, Krishna-Murthy MM (1987) Effect of certain biochemical factors on the expression of resistance of rice varieties to brown planthopper (Nilaparvata lugens Stal.). J Res APAU 15:124–128

    Google Scholar 

  • Szabolcs I (1994) Soils and salinisation. In: Pessarakali M (ed) In Handbook of Plant and Crop Stress, Marcel Dekker, New York 3–11

    Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Commen Agricult Food Chem 2:99–122

    CAS  Google Scholar 

  • Tanaka A, Park YD (1966) Significance of the absorption and distribution of silica in the rice plant. Soil Sci Plant Nutr 12:191–195

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance Na+ transport in higher plants. Ann Bot-London 91:503–527

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012a) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28:281–291

    CAS  Google Scholar 

  • Tripathi DK, Kumar R, Chauhan DK, Rai AK, Bicanic D (2011) Laser-induced breakdown spectroscopy for the study of the pattern of silicon deposition in leaves of Saccharum species. Instrument Sci Technol 39:510–521

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012b) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Pratap SR, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Amador BM, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    CAS  Google Scholar 

  • Umar SM (2002) Genotypic differences in yield and quality of groundnut as affected by potassium nutrition under erratic rainfall conditions. J Plant Nutr 25:1549–1562

    CAS  Google Scholar 

  • Vaculık M, Landberg T, Greger M, Luxova M, Stolarikova M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot-London 110:433–443

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    PubMed  CAS  Google Scholar 

  • Wang L, Showalter AM, Ungar IA (1997) Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (chenopodiaceae). Am J Bot 4:1247–1255

    Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    PubMed  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Google Scholar 

  • Waraich EA, Ahmad R, Ashraf S, Ehsanullah MY (2011) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5(6):764–777

    CAS  Google Scholar 

  • Yao X, Chu J, Cai K, Liu L, Shi J, Geng W (2011) Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol Trace Elem Res 143:507–517

    PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Google Scholar 

  • Yoshida S (1975) The physiology of silicon in rice, vol 25. Food FERT. Technology Center, Taipei, Taiwan

    Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant. I. A new method for determining the localization of silicon within plant tissues. Soil Sci Plant Nutr 8:30–35

    CAS  Google Scholar 

  • Zhao FJ, Ma JF, Mehrag AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    PubMed  CAS  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tripathi, D.K., Singh, V.P., Gangwar, S., Prasad, S.M., Maurya, J.N., Chauhan, D.K. (2014). Role of Silicon in Enrichment of Plant Nutrients and Protection from Biotic and Abiotic Stresses. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_2

Download citation

Publish with us

Policies and ethics