Skip to main content

Crop Improvement Through Tissue Culture

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Techniques developed for plant tissue culture and micropropagation are important enabling technologies that should help meet the demand for more efficient agricultural and horticultural production in the next decades. An overview of in vitro propagation and regeneration via meristem, cell, tissue and organ cultures, organogenesis and somatic embryogenesis is presented. New methods and developments in protoplast isolation and culture, hairy root culture and transfer of genes in transgenic plants are covered. These technologies could significantly simplify breeding programmes and overcome some important agronomic and environmental traits that would not be achievable through conventional breeding and propagation. Tissue culture protocols are available for most crop plants, although continued optimisation of culture media and growth conditions is still required for many crops, especially some cereals and woody plants. Tissue culture methods, in combination with molecular techniques, have been successfully used to incorporate specific traits through direct gene transfer and subsequent culture.

In vitro techniques for culture of protoplasts, anthers, microspores, ovules and embryos have been used to introduce new genetic variation into breeding lines via haploid plant production. Cell culture has also produced somaclonal and gametoclonal variants with crop improvement potential. The culture of single cells and meristems can be used to eradicate pathogens from planting stocks and improve yields of existing cultivars. Large-scale, commercial micropropagation laboratories are providing millions of plants for agricultural planting and synthetic seeds; however a better understanding of the cost–benefit analysis of tissue culture is required. Biopharming of plants with significant advantages in cost and safety is regarded as a promising platform for the production of complex pharmaceutical proteins and metabolites. The present review summarises advances made in this area of hairy root mediated biotransformation and exogenous substrate production. However, low product synthesis remains a major obstacle that limits extensive commercialisation of plant bioproduction technology. Bioinformatic and molecular data indicates that miRNAs control expression of a large proportion of important genes, and this review discusses some representative examples of this. Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation methods, limiting the extent to which these agriculturally important transgenic plants can be utilised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboshama HMS (2011) Somatic embryogenesis proliferation, maturation and germination in Cajanus cajan. World J Agric Sci 7:86–95

    CAS  Google Scholar 

  • Aftab F (2012) Progress and prospects for efficient micropropagation of woody plants. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Aftab F, Iqbal J (1999) Plant regeneration from protoplasts derived from cell suspension of adventive somatic embryos in sugarcane (Saccharum spp. hybrid cv. CoL-54 and cv. CP-43/33). Plant Cell Tiss Org Cult 56:155–162

    CAS  Google Scholar 

  • Aftab F, Preece JE (2007) Forcing and in vitro establishment of softwood shoots from large stem segments of woody plants. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and sustainable agriculture 2006 and beyond. Springer, Dordrecht

    Google Scholar 

  • Aftab F, Akram S, Iqbal J (2008a) Estimation of fixed oils from various explants and in vitro callus cultures of jojoba (Simmondsia chinensis). Pak J Bot 40:1467–1471

    CAS  Google Scholar 

  • Aftab F, Alam M, Afrasiab H (2008b) In vitro shoot multiplication and callus induction in Gladiolus hybridus Hort. Pak J Bot 40:517–522

    CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    CAS  PubMed  Google Scholar 

  • Akdemir H, Suzerer V, Tilkat E, Yildirim H, Onay A, Ciftci YO (2012) In vitro conservation and cryopreservation of mature pistachio (Pistacia vera L) germplasm. J Plant Biochem Biotechnol. doi:10.1007/s13562-012-0109-2

    Google Scholar 

  • Akhond MAY, Machray GC (2009) Biotech crops: technologies, achievements and prospects. Euphytica 166:47–59

    CAS  Google Scholar 

  • Al-Taleb MM, Hassawi DS, Abu-Romman SN (2011) Production of virus free potato plants using meristem culture from cultivars grown under Jordanian environment. Am Eurasian J Agric Environ Sci 11:467–472

    CAS  Google Scholar 

  • Altman A (1999) Plant biotechnology in the 21st century: the challenges ahead. Electron J Biotechnol 2:51–55

    Google Scholar 

  • Anand S (2010) Various approaches for secondary metabolite production through plant tissue culture. Pharmacia 1:1–7

    Google Scholar 

  • Anand Y, Bansal YK (2002) Synthetic seeds: a novel approach of in vitro plantlet formation in Vasaka (Adhatoda vasica Nees). Plant Biotechnol 19:159–162

    CAS  Google Scholar 

  • Asakaviciute R (2008) Androgenesis in anther culture of Lithuanian spring barley (Hordeum vulgare L.) and potato (Solanum tuberosum L.) cultivars. Turk J Biol 32:155–160

    CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    CAS  PubMed  Google Scholar 

  • Ashraf M, Ahmad AMS, Ozturk M, Aksoy A (2012) Crop improvement through different means: challenges and prospects. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145

    CAS  PubMed  Google Scholar 

  • Azad MAK, Yokota S, Ohkubo T, Andoh Y, Yahara S, Yoshizawa N (2005) In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tiss Org Cult 80:43–50

    Google Scholar 

  • Aziz MA, Singh S, Anand KP, Bhatnagar R (2002) Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochem Biophys Res Commun 299:345–351

    CAS  PubMed  Google Scholar 

  • Aziz MA, Sikriwal D, Singh S, Jarugula S, Kumar PA, Bhatnagar R (2005) Transformation of an edible crop with the pagA gene of Bacillus anthracis. FASEB J 19:1501–1503

    CAS  PubMed  Google Scholar 

  • Azlan GJ, Marziah M, Radzali M, Johari R (2002) Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tiss Org Cult 69:271–278

    Google Scholar 

  • BANR (Board on Agriculture and Natural Resources) (2000) Genetically modified pest protected plant: science and regulation. Agriculture and Natural Resources Publications, Allahabad, p292

    Google Scholar 

  • Barghchi M, Alderson PG (1989) Pistachio (Pistacia vera L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5. Trees II. Springer, Berlin

    Google Scholar 

  • Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214

    CAS  Google Scholar 

  • Basu SK, Datta M, Sharma M, Kumar S (2011) Haploid production technology in wheat and some selected higher plants. Aust J Crop Sci 5:1087–1093

    Google Scholar 

  • Beranova M, Rakousk YS, Vaurova Z, Skalicky T (2008) Sonication assisted Agrobacterium 22 mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Org Cult 94:253–259

    Google Scholar 

  • Bevage AD, Davies IG, Robbins MP, Morris P (1997) Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird’s foot trefoil). Plant Mol Biol 35:443–458

    Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V, Sharma KK (2010) Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. J Crop Improv 24:92–111

    CAS  Google Scholar 

  • Bhatti S, Jha G (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225

    CAS  PubMed  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (2007) Breeding rice for resistance to biotic stresses: conventional and molecular approaches. Sabrao J 45:225–234

    Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    CAS  PubMed  Google Scholar 

  • Bupat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (mulberry) by encapsulated shoot buds. Plant Cell Rep 46:393–395

    Google Scholar 

  • Burris JN, Mann DG, Joyce BL, Neal Stewart C Jr (2009) An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L). Bioenergy Res 2:267–274

    Google Scholar 

  • Cardarelli M, Spano L, Mariotti D, Mauro ML, Van-Slyus MA, Costantino P (1987) The role of auxin in hairy root induction. Mol Gen Genet 208:457–463

    CAS  Google Scholar 

  • Carpenter JE (2012) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Google Scholar 

  • Carron TR, Robbins MP, Morris P (1994) Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in hairy root cultures. Theor Appl Genet 87:1006–1015

    CAS  PubMed  Google Scholar 

  • Cequerier-Sanchez E, Rodriguez C, Dorta-Guerra R, Ravelo AG, Zarate R (2011) Echiumacanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnol 11:42

    Google Scholar 

  • Cerdeira AL, Duke SO (2010) Effects of glyphosate-resistant crop cultivation on soil and water quality. AgBioForum 12:16–24

    Google Scholar 

  • Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tiss Org Cult 106:337–344

    CAS  Google Scholar 

  • Chasmi NA, Sharifi M, Yousefzadi M, Behmanesh M, Palazon J (2011) The production of cytotoxic lignans by hairy root cultures of Linum album. World Acad Sci Eng Technol Notes 80:401

    Google Scholar 

  • Chawla HS (2009) Introduction to plant biotechnology, 3rd edn. Science, Enfield, NH

    Google Scholar 

  • Chen P, Li R, Zhou R, Zhao Y (2010) Direct shoot organogenesis and plant regeneration from cotyledonary node of kenaf (Hibiscus cannabinus L.). Afr J Biotechnol 9:8693–8697

    CAS  Google Scholar 

  • Cho HJ, Wildholm JM (2002) Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tiss Org Cult 69:259–269

    CAS  Google Scholar 

  • Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/aldolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580:3136–3144

    CAS  PubMed  Google Scholar 

  • Choffe KL, Victor JMR, Murch SJ, Saxena PK (2000) In vitro regeneration of Echinacea purpurea L.: direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cell Dev Plant 36:30–36

    CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J Bacteriol 179:3085–3094

    CAS  PubMed  Google Scholar 

  • Compton ME, Saunders JA, Veilleux RE (2000) Use of protoplasts for plant improvement. In: Trigiano RN, Gray DJ (eds) Plant tissue culture concepts and laboratory exercises, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Curtis IS (2005) Production of transgenic crops by the floral-dip method, In: Pena L (ed) Transgenic plants: methods and protocols. Methods in molecular biology, vol 286. Humana, Totowa, NJ

    Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering, dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    CAS  PubMed  Google Scholar 

  • Davey MR, Anthony P (2010) Plant cell cultures: essential methods. CABI Publishing, Oxford, UK

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    CAS  PubMed  Google Scholar 

  • De Filippis LF (1999) To mark an end and begin a new era in plant tissue culture. In: Johnson KA, McFarlane IJ (eds) Plant tissue culture at the edge of the new millennium. UTS Publication, Sydney

    Google Scholar 

  • De Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium In: Ashraf M Ozturk MA and Ahmad MSA (eds), Plant Adaptation and Phytoremediation. Springer Verlag, Berlin

    Google Scholar 

  • De Filippis LF (2012) Breeding for biotic stress tolerance in plants. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • De Filippis LF, Hoffmann H, Hampp R (1996) Identification of somatic hybrids of tobacco generated by electrofusion and culture of protoplasts using RAPD-PCR. Plant Sci 121:39–46

    Google Scholar 

  • De Filippis LF, Hampp R, Ziegler H (2000) Membrane permeability changes and ultrastructural abnormalities during protoplast fusion. J Plant Physiol 156:628–634

    Google Scholar 

  • de Fossard RA (2000) Commercial micropropagation. Magpie Digital Media, Eagle Heights, QLD, Available in CD

    Google Scholar 

  • de Fossard RA (2007) Plant tissue culture propagation. Magpie Digital Media, Eagle Heights, QLD, Available in CD

    Google Scholar 

  • De Guzman D, Walmsley AM, Webster DE, Hamill JD (2011) Hairy roots cultures from different Solanaceous species have varying capacities to produce E. coli B-subunit heat-labile toxin antigen. Biotechnol Lett 33:2495–2502

    CAS  PubMed  Google Scholar 

  • De Klerk G-J (2002) Rooting of microcuttings: theory and practice. In Vitro Cell Dev Biol Plant 38:415–422

    Google Scholar 

  • Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality medicines. Curr Pharm Biotechnol 7:33–49

    CAS  PubMed  Google Scholar 

  • Degenhardt J, Szankowski I (2006) Transformation of apple (Malus domestica Borkh.) using the phosphomannose isomerase gene as a selectable marker. Acta Hortic 725:811–814

    CAS  Google Scholar 

  • Dhillon RS, Hooda MS, Jattan M, Chawla V, Bhardwaj M, Goyal SC (2009) Development and molecular characterization of interspecific hybrids of Jatropha curcas J. Indian J Biotechnol 8:384–390

    CAS  Google Scholar 

  • Diaz CL, Spank HP, Wijffelman CA, Kijne JW (1995) Genomic requirements of Rhizobium for nodulation of white clover hairy roots transformed with pea lectin gene. Mol Plant Microbe Int 8:348–356

    CAS  Google Scholar 

  • Dobranszki J, Teixeira da Silva JA (2010) Micropropagation of apple – a review. Biotechnol Adv 28:462–488

    CAS  PubMed  Google Scholar 

  • Du M, Wu X, Ding J, Hu Z, White KN, Branford-White CJ (2003) Astragaloside IV and polysaccharide production by hairy roots of Astragalus membranaceus in bioreactors. Biotechnol Lett 25:1853–1856

    CAS  PubMed  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Google Scholar 

  • Finer JJ, McMullen DM (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    Google Scholar 

  • Finer J, Finer K, Ponappa T (1999) Particle bombardment mediated transformation. In: Hammond J, McGarvey PB, Yusibov V (eds) Plant biotechnology. Springer, Berlin

    Google Scholar 

  • Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L). In Vitro Cell Dev Biol 29:166–173

    Google Scholar 

  • Firoozabady E, De Boer EL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Elizabeth EM (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    CAS  Google Scholar 

  • Genga A, Cerjotti A, Bollini R, Bernacchia G, Allavena A (1991) Transient gene expression in bean tissues by high velocity microprojectile bombardment. J Genet Breed 45:129–134

    Google Scholar 

  • Gioi TD, Tuan VD (2004) Anther culture from crosses between rice ir64 and new plant type cultivars. Omonrice 12:27–32

    Google Scholar 

  • Gould JH, Magallanes-Cedeno M (1998) Adaptation of cotton shoot apex culture to Agrobacterium-mediated transformation. Plant Mol Biol Rep 16:1–10

    Google Scholar 

  • Gould J, Banister S, Hasegawa O, Fahima M, Smith RH (1991a) Regeneration of Gossypium Hirsutum and G. barbadense from shoot apex tissue for transformation. Plant Cell Rep 10:12–16

    Google Scholar 

  • Gould JMD, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991b) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    CAS  PubMed  Google Scholar 

  • Greerlings A, Hallard D, Martinez CA, Lopes CI, Heijden RV, Verpoorte R (1999) Alkaloid production by a Cinchona officinalis ‘Ledgeriana’ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 18:191–196

    Google Scholar 

  • Hakeem R, Ozturk M, Ahmad P, Memon AR (2012) Biotechnology as an aid for crop improvement to overcome food shortage. In: Asharaf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Hakkinen ST, Moyano E, Cusido RM, Palazon J, Pinol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6b-hydroxylase. J Exp Bot 56:2611–2618

    PubMed  Google Scholar 

  • Hamamoto H, Boulter ME, Shirsat AH, Croy EJ, Ellis JR (1990) Recovery of morphogenetically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep 9:88–92

    Google Scholar 

  • Hampp R, Hoffmann H, Schonherr K, Johann P, De Filippis LF (1997) Fusion and metabolism of plant cells and protoplasts as affected by microgravity. Planta 203:S42–S53

    CAS  PubMed  Google Scholar 

  • Han KH, Keathley DE, Davis JM, Gordon MP (1993) Regeneration of a transgenic woody legume (Robinia pseudoacacia L. - black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci 88:149–157

    Google Scholar 

  • Han GY, Wang XF, Zhang GY, Ma ZY (2009) Somatic embryogenesis and plant regeneration of recalcitrant cotton (Gossypium hirsutum). Afr J Biotechnol 8:432–437

    CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    PubMed  Google Scholar 

  • Harwood WA, Chen DF, Creisses GP (1996) Transformation of pollen and microspores. In: Mohan JM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hasegawa H, Sato M, Suzuki M (2002) Efficient plant regeneration from protoplasts isolated from long-term, shoot primordial-derived calluses of garlic (Allium sativum). J Plant Physiol 159:445–449

    Google Scholar 

  • He T, Yang Y, Tu SB, Yu MQ, Li XF (2006) Selection of interspecific hybrids for anther culture of indica rice. Plant Cell Tiss Organ Cult 86:271–277

    Google Scholar 

  • Heberle-Bors E, Stoger E, Touraev A, Zarsky V, Vicente O (1996) In vitro pollen cultures: progress and perspectives. In: Mohapatra SS, Knox RB (eds) Pollen biotechnology. Gene expression and allergen characterization. Chapman and Hall, New York

    Google Scholar 

  • Herman EB (2009) Genetic modification of plants: methods and applications 2005–2009. Agricell Reports Publication, Shrub Oak

    Google Scholar 

  • Hess D, Dressler K (1989) Tumor transformation of Petunia hybrida via pollen co-cultivated with Agrobacterium tumefaciens. Bot Acta 102:202–207

    CAS  Google Scholar 

  • Hiei Y, Komari K, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    CAS  PubMed  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    CAS  PubMed  Google Scholar 

  • Hoang TML, De Filippis LF, Le XT (2009) Salt tolerance and screening for genetic changes in rice mutants after gamma irradiation using RAPD and microsatellite (RAMP) markers. Open J Plant Sci 2:62–69

    CAS  Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf disks. Proc Natl Acad Sci USA 83:2571–2575

    CAS  PubMed  Google Scholar 

  • Hu Z-B, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    CAS  Google Scholar 

  • Huang J, Wang Q (2002) Agricultural biotechnology development and policy in China. AgBioForum 5:122–135

    Google Scholar 

  • Hung HV, De Filippis LF, Buckney R (2011) Population structure and genetic diversity of the rare and endangered Sinicalamus mcclure and Markhamia stipulata in Ba Be National Park, Vietnam. Asian J Plant Sci 10:312–322

    Google Scholar 

  • Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria x ananassa Duch.) plants. Indian J Biotechnol 7:465–472

    CAS  Google Scholar 

  • IAEA TECDDC (2004) Low cost options for tissue culture technology in developing countries. In: Proceedings technical meeting. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna

    Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    CAS  Google Scholar 

  • Islam SMS (2010) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Aust J Crop Sci 4:660–665

    CAS  Google Scholar 

  • Jackson S, Rounsley S, Prugganan M (2006) Comparative sequencing of plant genomes: choices to make. Plant Cell 18:1100–1104

    CAS  PubMed  Google Scholar 

  • Jähne A, Lörz H (1995) Cereal microspore culture. Plant Sci 109:1–12

    Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    CAS  Google Scholar 

  • Jain SM, Brar DS (2010) Molecular techniques in crop improvement, 2nd edn. Springer, London

    Google Scholar 

  • Jain M, Saxena PK (2009) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana, New York

    Google Scholar 

  • James C (1999) Global review of commercialized transgenic crops in 1999. Int Serv Acquis Agric Biotechnol Appl 12:1–7

    Google Scholar 

  • James C (2007) Executive summary global status of commercialized Biotech/GM crops. In: ISAAA Brief 37. ISAAA, Ithaca, NY

    Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops. ISAAA, Ithaca, NY, p 39

    Google Scholar 

  • James C (2010) A global overview of biotech (GM) crops, adoption, impact and future prospects. GM Crops 1:8–12

    PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: B-glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    CAS  Google Scholar 

  • Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 8:229–237

    Google Scholar 

  • Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Indian Crops Prod 33:67–77

    CAS  Google Scholar 

  • Keng CL, Singaram N, Lim BP (2010) Production of artemisinin from cell suspension culture of Artemisia annua L. AsPac J Mol Biol Biotechnol 18:139–141

    Google Scholar 

  • Khatun MM, Khatun H, Khanam D, Al-Amin MD (2010) In vitro root formation and plantlet development in dendrobium orchid. Bangladesh J Agric Res 35:257–265

    Google Scholar 

  • Kim SW, Oh SC, In DS, Liu JR (2003) Plant regeneration of rose (Rosa hybrida) from embryogenic cell-derived protoplasts. Plant Cell Tiss Org Cult 73:15–19

    CAS  Google Scholar 

  • Kim S, Kim C, Li W, Kim T, Li Y, Zaidi MA, Altosaar I (2008) Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer. Euphytica 164:829–839

    Google Scholar 

  • Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10:2860–2872

    CAS  PubMed  Google Scholar 

  • Kintzios S, Makri O, Pistola E, Matakiadis T, Shi HP, Economou A (2004) Scale-up production of puerarin from hairy roots of Pueraria phaseoloides in an airlift bioreactor. Biotechnol Lett 26:1057–1059

    CAS  PubMed  Google Scholar 

  • Kittipongpatana N, Hock RS, Porter JR (1998) Production of solasodine by hairy root, callus, and cell suspension cultures of Solanum aviculare Forst. Plant Cell Tiss Org Cult 52:133–143

    CAS  Google Scholar 

  • Klima M, Abraha E, Vyvadilova M, Bechyn M (2009) Protoplast culture and fusion between Brassica carinata and Brassica napus. Agricultura Tropica et Subtropica 42(3):4–45

    Google Scholar 

  • Koehle A, Sommer S, Yazaki K et al (2002) High level expression of chorismate pyruvate-lyase and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon. Plant Cell Physiol 43:894–902

    Google Scholar 

  • Kozlov G, Maattanen P, Schrag JD, Pollock S, Cygler M, Nagar B, Thomas DY, Gehring K (2010) Crystal structure of the bb domains of the protein disulfide isomerase ERp57. Structure 14:1331–1339

    Google Scholar 

  • Kumar S, Allen GC, Thompson WF (2006) Gene targeting in plants: fingers on the move. Trends Plant Sci 11:159–161

    CAS  PubMed  Google Scholar 

  • Lambardi M, Benelli C, Fabbri A (1997) In vitro axillary shoot proliferation of apple rootstocks under different ethylene conditions. In Vitro Cell Dev Biol Plant 33:70–74

    CAS  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri R, Lorz H (1992) Transformation of cereal via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2:631–638

    CAS  Google Scholar 

  • Lin J, Chen Y, Xu Y, Yan F, Tang L, Chen F (2003) Cloning and expression of Curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sinica 45:858–863

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcriptional factors, DREB1 and DREB, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed  Google Scholar 

  • Liu B, Liu ZL, Li XW (1999) Production of highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb): evidence for inter-genomic exchange. Theor Appl Genet 98:1099–1103

    Google Scholar 

  • Liu B, Wang W, Gao J, Chen F, Wang S, Xu Y, Tang L, Jia Y (2010) Molecular cloning and characterization of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Jatropha curcas. Acta Physiol Plant 32:531–539

    CAS  Google Scholar 

  • Lyon BR, Cousins YL, Llewell DJ, Dennis ES (1993) Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid. Transgenic Res 2(3):162–169

    CAS  Google Scholar 

  • Lyra DH, Sampaio LS, Pereira DA, Silva AP, Amaral CLF (2011) Pollen viability and germination in Jatropha ribifolia and Jatropha mollissima (Euphorbiaceae): species with potential for biofuel production. Afr J Biotechnol 10:368–374

    Google Scholar 

  • Ma R, Guo YD, Pulli S (2003) Somatic embryogenesis and fertile green plant regeneration from suspension cell-derived protoplasts of rye (Secale cereale L). Plant Cell Rep 22:320–327

    CAS  PubMed  Google Scholar 

  • Magyar-Tabori K, Dobranszki J, Teixeira da Silva JA et al (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org Cult 101:251–267

    CAS  Google Scholar 

  • Malik M (2008) Comparison of different liquid solid culture systems in the production of somatic embryos from Narcissus ovary explants. Plant Cell Tiss Org Cult 94:337–345

    Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloid by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201

    CAS  Google Scholar 

  • Mathur J, Koncz C (1998) Callus culture and regeneration. In: Martinez-Zapater J, Salinas J (eds) Methods in molecular biology, vol 82. Arabidopsis protocols. Hurmana, Totowa, NJ

    Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L). Appl Microbiol Biotechnol 60:571–576

    CAS  PubMed  Google Scholar 

  • Merkli A, Christen P, Kapetanidis I (1997) Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep 16:632–636

    CAS  Google Scholar 

  • Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie à virus. C R Acad Sci 235:1324–1325

    CAS  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–211

    CAS  PubMed  Google Scholar 

  • Mulagabul V, Tsay H-S (2004) Plant cell cultures - an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:1–29

    Google Scholar 

  • Munis MFH, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X (2010) A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 393:38–44

    CAS  PubMed  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17–30

    Google Scholar 

  • Murphy DJ (2007) Plant breeding and biotechnology: societal context and the future of agriculture. Cambridge University Press, Cambridge

    Google Scholar 

  • Naik SK, Chand PK (2011) Tissue culture-mediated biotechnological intervention in pomegranate: a review. Plant Cell Rep 30:707–721

    CAS  PubMed  Google Scholar 

  • Navratilova B, Luhova L, Petrivalsky M (2008) Effect of UV-C irradiation on mesophyll protoplasts of Cucumis sativus. Plant Cell Tiss Org Cult 94:313–318

    Google Scholar 

  • Neuman KH, Kumar AT (2009) Plant cell and tissue culture – a tool in biotechnology. Science, Enfield, NH

    Google Scholar 

  • Ni X, Tian Z, Liu J, Song B, Li J, Shi X, Xie C (2010) StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Sci 178:158–169

    CAS  Google Scholar 

  • Nishikawa K, Ishimaru K (1997) Flavonoids in root cultures of Scutellaria baicalensis. J Plant Physiol 151:633–636

    CAS  Google Scholar 

  • Oliver HF, Orsi RH, Wiedmann M, Boor KJ (2010) Listeria monocytogenes B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol 76:4216–4232

    CAS  PubMed  Google Scholar 

  • Onay A (2000) Micropropagation of pistachio from mature trees. Plant Cell Tiss Org Cult 60:159–162

    Google Scholar 

  • Onay A, Jeffree CE, Yeoman MM (1996) Plant regeneration from encapsulated embryoids and an embryogenic mass of pistachia Pistacia vera L. Plant Cell Rep 15:723–726

    Google Scholar 

  • Onay A, Jeffree CE (2000) Somatic embryogenesis in pistachio. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, Chap 10. Kluwer Academic, Dordrecht

    Google Scholar 

  • Onay A, Tilkat E, Yildirim H, Suzerer V (2007) Indirect somatic embryogenesis from mature embryo cultures of Pistachio, Pistacia vera L. Propag Ornam Plants 7:68–74

    Google Scholar 

  • Ozden Tokatli Y, Ozudogru EA, Akcin A (2005) In vitro response of pistachio nodal explants to silver nitrate. Sci Hortic 106:415–426

    CAS  Google Scholar 

  • Ozden Tokatli Y, Ozudogru EA, Gumusel F, Lambardi M (2007) Cryopreservation of Pistacia spp. seeds by dehydration and one-step freezing. CryoLetters 28:83–94

    CAS  PubMed  Google Scholar 

  • Ozden Tokatli Y, Ozudogru EA, Akdemir H, Gumusel F (2008) Application of cryopreservation technology for pistachio germplasm conservation. Acta Hortic 839:245–252

    Google Scholar 

  • Ozden Tokatli Y, Akdemir H, Tilkat E, Onay A (2010) Current status and conservation of Pistacia germplasm. Biotechnol Adv 28:130–141

    CAS  PubMed  Google Scholar 

  • ÖzyiÄŸit II (2012) Agrobacterium tumefaciens and its use in plant biotechnology. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Padulosi S, Hadj-Hassan A (2001) Towards a comprehensive documentation and use of Pistacia genetic diversity in central and W. Asia, N. Africa, Europe. The International Plant Genetic Resources Institute (IPGRI), Rome

    Google Scholar 

  • Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    CAS  PubMed  Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants crops and forest trees. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome

    Google Scholar 

  • PanosMedia Brief (1999) Greed or need? Genetically modified crops. Media release no. 30, Swedish International Development Cooperation Agency and the UK Department for International Development. www.ratical.org/co-globalize/GMcrops.html

  • Pascual DW (2007) Vaccines are for dinner. Proc Natl Acad Sci USA 104:10757–10758

    CAS  PubMed  Google Scholar 

  • Patena L, Sutter EG, Dandekar AM (1988) Root induction by Agrobacterium rhizogenes in a difficult-to-root woody species. Acta Hortic 227:324–329

    Google Scholar 

  • Peat G, Jones M (2012) A protocol for rapid, measurable plant tissue culture using stem disc meristem micropropagation of garlic (Allium sativum L.). School Sci Rev 345:93–98

    Google Scholar 

  • Piccioni E, Standardi A (1995) Encapsulation of micropropagated buds of six woody species. Plant Cell Tiss Org Cult 42:221–226

    Google Scholar 

  • Potrykus I (2001) Golden rice and beyond. Plant Physiol 125:1157–1161

    CAS  PubMed  Google Scholar 

  • Preece JE, Read PE (2007) Forcing leafy explants and cuttings from woody species. Propag Ornam Plants 7:138–144

    Google Scholar 

  • Qaim M (2011) Genetically modified crops and global food security. In: Beladi H, Choi EK (eds) Frontiers of economics and globalization, vol 10. Emerald Group, London

    Google Scholar 

  • Qin MB, Li GZ, Yun Y, Ye HC, Li GF (1994). Induction of hairy root from Artemisia annua with Agrobacterium rhizogenes sand its culture in vitro. Acta Bot Sin 36 (Suppl): 165–170 (in Chinese with an English abstract)

    Google Scholar 

  • Radchuk VV, Korkhovoy VI (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Florina’. Plant Cell Tiss Org Cult 81:203–212

    CAS  Google Scholar 

  • Radfar M, Sudarshana MS, Niranjan MH (2012) Betalains from stem callus cultures of Zaleya decandra LN Burm f-A medicinal herb. J Med Plants Res 6:2443–2447

    CAS  Google Scholar 

  • Rahman M-u, Shaheen T, Ashraf M, Zafar Y (2012) Bridging genomic and classic breeding approaches for improving crop productivity. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Rahnama H, Hasanloo T, Shams MR, Sepehrifa R (2008) Silymarin production by hairy root culture of Silybum marianum (L.) Gaertn. Iran J Biotechnol 6:113–118

    CAS  Google Scholar 

  • Rashid B, Husnain T, Riazuddin S (2012) Plant genetic engineering: problems and applications. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Ratheika V, Silva TD (2007) A study on the anther culture response in different varieties of rice (Oryza sativa L.) sub species indica. Proc 27th Ann Session Institute Biology, Sri Lanka

    Google Scholar 

  • Razdan MK (2003) Introduction to plant tissue culture. Science, Enfield, NH

    Google Scholar 

  • Redenbaugh K, Paasch BD, Nichol JW, Kosslert ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of sexual embryos. Bio/Technology 4:797–801

    Google Scholar 

  • Redenbaugh K, Slade D, Viss P, Fujii JA (1987) Encapsulation of somatic embryos in synthetic seed coats. Hortic Sci 22:803–809

    Google Scholar 

  • Redenbaugh K, Fujii J, Slade D, Viss P, Kossler M (1991) Artificial seeds-encapsulated somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, high-Tec micropropagation. Springer, Heidelberg

    Google Scholar 

  • Rehman S, Yun SJ (2006) Developmental regulation of K accumulation in pollen, anthers and papillae: are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization state in barley (Hordeum vulgare L) regulated by changes in K concentration? J Exp Bot 57:1315–1321

    CAS  PubMed  Google Scholar 

  • Roest S, Gilissen LJW (1989) Plant regeneration from protoplasts: a literature review. Acta Bot Neerl 38:1–23

    Google Scholar 

  • Rojas CA, Hemerly AS, Ferreira PCG (2010) Genetically modified crops for biomass increase, genes and strategies. GM Crops 1:1–6

    Google Scholar 

  • Rosati P, Menzzetti B, Anchenari M et al (1990) In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Hortic 280:409–416

    Google Scholar 

  • Roy B, Mandal AB (2005) Anther culture response in indica rice and variations in major agronomic characters among the androclones of a scented cultivar, Karnal. African J Biotechnology 4: 235–240

    Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10:1–22

    CAS  Google Scholar 

  • Roy S, Tyagi A, Tiwari S, Singh A, Sawant SV, Singh PK, Tuli R (2010) Rabies glycoprotein fused with B subunit of cholera toxin expressed in tobacco plants folds into biologically active pentameric protein. Prot Expres Purification 70:184–190

    CAS  Google Scholar 

  • Rudrappa T, Neelwarne B, Kumar V, Lakshmann V, Venkataramareddy SR, Ashwathanarayana RG (2005) Peroxidase production from hairy root cultures of red beet (Beta vulgaris). Electron J Biotechnol 8:185–196

    CAS  Google Scholar 

  • Sainsbury F, Cañizares MC, Lomonossoff GP (2010) Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu Rev Phytopathol 48:437–455

    CAS  PubMed  Google Scholar 

  • Santos AM, Oliver MJ, Sanchez AM Payton P, Saibo N, Oliveira MM (2007) Adventitious shoot regeneration in Prunus dulcis - a molecular approach to the regeneration process. In: Proceedings of international symposium on biotechnology of temperate fruit crops and trop species, pp 663–668

    Google Scholar 

  • Sharma P, Rajam MV (1995) Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). J Exp Botany 46:153–141

    Google Scholar 

  • Sharma M, Modgil M, Sharma DR (2000) Successful propagation in vitro of apple rootstock MM106 and influence of phloroglucinol. Indian J Exp Biol 38:1236–1240

    CAS  PubMed  Google Scholar 

  • Sharma MK, Jani D, Thungapathra M, Gautam JK, Meena LS, Singh Y, Ghosh A, Tyagi AK, Sharma AK (2008) Expression of accessory colonization factor subunit A (ACFA) of Vibrio cholerae and ACFA fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). J Biotechnol 135:22–27

    CAS  PubMed  Google Scholar 

  • Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatments. In: Vasil I (ed) Molecular improvement of cereal crops. Kluwer, Dordrecht

    Google Scholar 

  • Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    CAS  PubMed  Google Scholar 

  • Silva TD (2010) Indica rice anther culture: can the impasse be surpassed? Plant Cell Tiss Org Cult 100:1–11

    Google Scholar 

  • Silva TD, Achala HHK (2008) Microspore staging for haploid cell culture in Oryza sativa subspecies indica (rice). Sri Lnaka Assoc Advanc Science Proceed 64th Annual Session

    Google Scholar 

  • Silva TD, Ratanyake WJ (2003) Anther culture potential of indica varieties, Kurulu and BG 250. Trop Agric Res Ext 12:53–56

    Google Scholar 

  • Sivanesan I, Jeong BR (2009) Induction and establishment of adventitious and hairy root cultures of Plumbago zeylanica L. Afr J Biotechnol 8:5294–5300

    CAS  Google Scholar 

  • Slama Ayed O, De Buyser J, Picard E, Trifal Y, Slim Amara H (2010) Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum subsp. Durum Desf.). J Plant Breed Crop Sci 2:030–038

    CAS  Google Scholar 

  • Smith RH, Hood E (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Google Scholar 

  • Smith CR, Saunders JA, van Wert S, Cheng JP, Matthews BF (1994) Expression of GUS and CA activities using electrotransformed pollen. Plant Sci Limerick 104:49–58

    CAS  Google Scholar 

  • Smith N, Kilpatrick J, Whitelam G (2001) Superfluous transgene integration in plants. Crit Rev Plant Sci 20:215–249

    CAS  Google Scholar 

  • Sommer A (2001) Golden rice. Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD (Unpublished manuscript)

    Google Scholar 

  • Souret FF, Kim Y, Wyslouzil BE, Wobbe KK, Weathers PJ (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83:653–667

    CAS  PubMed  Google Scholar 

  • Southgate EM, Davey MR, Power JB, Marchant R (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651

    CAS  PubMed  Google Scholar 

  • Spano L, Mariotti D, Cardarelli M, Branca C, Constantino P (1988) Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483

    CAS  PubMed  Google Scholar 

  • Stirn S, Lorz H (2006) Genetically modified plants. In: Heller KJ (ed) Genetically engineered food methods and detection, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Streatfield SJ (2006) Engineered chloroplasts as vaccine factories to combat bioterrorism. Trends Biotechnol 24:339–342

    CAS  PubMed  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    CAS  PubMed  Google Scholar 

  • Sudhakar Johnson T, Eswaran N, Sujatha M (2011) Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep 30:1573–1591

    CAS  PubMed  Google Scholar 

  • Sun SS (1999) Methionine enhancement in plants. In: Sigh BK (ed) Plant amino acids, biochemistry and biotechnology. Marcel Dekker, Dordrecht

    Google Scholar 

  • Sun SSM (2008) Application of agricultural biotechnology to improve food nutrition and healthcare products. Asia Pac J Clin Nutr 17:87–90

    PubMed  Google Scholar 

  • Suresh B, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2004) Polyamine and methyl jasmonate-influenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochem 39:2091–2096

    CAS  Google Scholar 

  • Sutiojono EMI, Johnson T, Eswaran N, Sujatha M (2011) Factors affecting protoplast culture of Cucumis melo ‘Green Delica'. Ann Bot 81:775–777

    Google Scholar 

  • Takahata K, Takeuchi M, Fujita M, Azuma J, Kamada H, Sato F (2004) Isolation of putative glycoprotein gene from early somatic embryo of carrot and its possible involvement in somatic embryo development. Plant Cell Physiol 45:1658–1668

    CAS  PubMed  Google Scholar 

  • Tang X, Zhang Z-Y, Zhang W-J, Zhao X-M, Zhang D, Liu Q-Q, Tang W-H (2010) Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol 154:1855–1870

    CAS  PubMed  Google Scholar 

  • Tayler BH, Amasino RM, White FF, Nester EW (1985) T-DNA analysis of plants regenerated from hairy root tumors. Mol Gen Genet 201:554–557

    Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    CAS  PubMed  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    CAS  PubMed  Google Scholar 

  • Tilkat E, Onay A (2009) Direct shoot organogenesis from in vitro derived mature leaf explants of pistachio. In Vitro Cell Dev Biol Plant 45:982–998

    Google Scholar 

  • Tilkat E, Onay A, Yildirim H, Ozen HC (2008) Micropropagation of mature male pistachio Pistacia vera L. J Hortic Sci Biotechnol 83:328–333

    CAS  Google Scholar 

  • Tilkat E, Onay A, Ozden Tokatli Y (2009a) In Vitro rooting improvement of adult pistachio, Pistacia vera L. ‘Atlı’. Acta Hortic 839:215–221

    Google Scholar 

  • Tilkat E, Onay A, Yildirim H, Ayaz E (2009b) Direct plant regeneration from mature leaf explants of pistachio Pistacia vera L. Sci Hortic 121(3):361–365

    CAS  Google Scholar 

  • Tilkat E, Ciftci YO, Akdemir H, Onay A, Tilkat EA (2012) Novel methods in micropropagation of pistachio. In: Asharaf M, Ahmad MSA, Ozturk M, Aksoy A (eds) Crop production for agricultural improvement. Springer Science-Business Media, Heidelberg

    Google Scholar 

  • Torregrosa L, Bouquet A (1997) Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tiss Org Cult 49:53–62

    CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA et al (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    CAS  PubMed  Google Scholar 

  • Twyman RM, Christou P, Stoger E (2002) Genetic transformation of plants and their cells. In: Marja K, Caldentey KM, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York

    Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Cristou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    CAS  PubMed  Google Scholar 

  • van der Leede-Plegt LM, van de Ven BC, Schilder M, Franken J, van Tunen AJ (1995) Development of pollen-mediated transformation for Nicotiana glutinosa. Transgenic Res 4:77–86

    Google Scholar 

  • Vargas VML, Flota FV (2006) An introduction to plant cell culture back to the future. In: Vargas VML, Flota FV (eds) Plant cell culture protocols methods in molecular biology, 2nd edn. Humana, Totowa, NJ

    Google Scholar 

  • Vinterhalter B, Savic J, Plastisa J, Raspor M, Ninkovics S, Mitic N, Vinterhalter D (2008) Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit. Plant Cell Tiss Org Cult 94:299–303

    CAS  Google Scholar 

  • Wang H, To K (2004) Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea. Plant Sci 166:1087–1096

    CAS  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230

    CAS  PubMed  Google Scholar 

  • Withers L, Engelmann F (1997) In vitro conservation of plant genetic resources. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York

    Google Scholar 

  • Wojas S, Clemens S, Sklodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1- and CePCS-expressing plants: effects of external As (V) concentration on As accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    CAS  PubMed  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological function of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  PubMed  Google Scholar 

  • Xu ZQ, Jia JF (1996) The reduction of chromosome number and the loss of regeneration ability during subculture of hairy root cultures of Onobrychis viciaefolia transformed by Agrobacterium rhizogenes. Plant Sci 120:107–112

    CAS  Google Scholar 

  • Xu H, Park JH, Kim YK, Park N II, Lee SY, Park SU (2009) Optimization of growth and pyranocoumarins production in hairy root culture of Angelica gigas. J Med Plants Res 3:978–981

    CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    CAS  PubMed  Google Scholar 

  • Yang C, Chen M, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics J 4:29–33

    CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P (2000) Engineering the pro-vitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Zhai DD, Supaibulwatanab K, Zhong J-J (2010) Inhibition of tumor cell proliferation and induction of apoptosis in human lung root cultures of Artemisia annua. Phytomed 17:856–861

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    CAS  PubMed  Google Scholar 

  • Zhang QY, Luo FX, Liu L, Gio FC (2010) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tiss Org Cult 101:41–47

    CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2005) Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tiss Org Cult 81:313–318

    Google Scholar 

  • Zimmermann MB, Hurrell R (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol 13:142–145

    CAS  PubMed  Google Scholar 

  • Zucchi MI, Arizono H, Morais VA, Fungaro MHP, Vieira MLC (2002) Genetic instability of sugarcane plants derived from meristem cultures. Genet Mol Biol 25:91–96

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. De Filippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Filippis, L.F. (2014). Crop Improvement Through Tissue Culture. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_12

Download citation

Publish with us

Policies and ethics